TORONTO Marlies
GP: 0 | W: 0 | L: 0
GF: 0 | GA: 0 | PP%: 0.00% | PK%: 0.00%
DG: Benoit Paulin | Morale : 99 | Moyenne d'Équipe : 65
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Tyson Jost0X100.0065398769707685677368646669636786997002251,500,000$
2Casey Mittelstadt0X100.006239886677818364716362656663658799690211875,000$
3Adam Erne0X100.008947776380748762586159576368657499680253800,000$
4Henrik Borgstrom0X100.0064438664838077667361596366656281996802361,250,000$
5Brett Ritchie0X100.0084507861897375595257586059736862996702711,750,000$
6John Quenneville (R)0X100.006145866376838061736062646367647699670243750,000$
7Paul Bittner (R)0XX100.007351875990858258555756605967647399670233750,000$
8Dominic Toninato (R)0X100.006347826179807859655860625971665799670263750,000$
9Jordan Kyrou (R)0X100.005739896769777666586364656863647699670223750,000$
10Lukas Vejdemo (R)0X100.006245906279788363746158646567646299670243750,000$
11Rasmus Asplund (R)0X100.005839826670817863726461656365667799670223750,000$
12Isaac Ratcliffe (R)0X100.007452835692858755515454595361627699660213750,000$
13Matthew Phillips (R)0X100.005339876157837862586059576263616499640223750,000$
14Spencer Smallman (R)0X100.006345846077757361555952586167635299640233750,000$
15Daniel O'Regan (R)0X100.004435827658474161485858585858497999570263750,000$
16Ryan Collins (R)0X100.007749875593767856305354604567647099650243750,000$
17Martin Fehervary (R)0X100.006445876081847458305757594661637499650206800,000$
18Nick Ebert0X100.006247865774828156305554584671665999640261750,000$
19Jesper Lindgren (R)0X100.005341835867757457305652545165636699610233750,000$
20Andrew Welinski (R)0X100.004835816575474350304140564960507199520273750,000$
Rayé
MOYENNE D'ÉQUIPE100.00644485627776766054585761596563719965
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Ville Husso (R)100.00748482847372747372747369736199680
2Marcus Hogberg (R)100.00737573917271737271737271756299670
3Veini Vehvilainen (R)100.00718280717069717069717065696299650
Rayé
1Brandon Halverson (R)100.00605856885958605958605967716799560
MOYENNE D'ÉQUIPE100.0070757384696870696870696872639964
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Kevin Dineen69696969818156CAN583300,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Salaire RestantSalaire MoyenSalaire Moyen RestantCap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Adam ErneTORONTO Marlies (TOR)LW254/20/1995No96 Kg185 CMNoNoNo3Pro & Farm800,000$685,714$800,000$685,714$0$0$No800,000$800,000$Lien
Andrew WelinskiTORONTO Marlies (TOR)D274/27/1993Yes91 Kg188 CMNoNoNo3Pro & Farm750,000$642,857$750,000$642,857$0$0$No750,000$750,000$
Brandon HalversonTORONTO Marlies (TOR)G243/29/1996Yes95 Kg193 CMNoNoNo3Pro & Farm750,000$642,857$750,000$642,857$0$0$No750,000$750,000$
Brett RitchieTORONTO Marlies (TOR)RW277/1/1993No100 Kg193 CMNoNoNo1Pro & Farm1,750,000$1,500,000$1,750,000$1,500,000$0$0$NoLien
Casey MittelstadtTORONTO Marlies (TOR)C2111/22/1998No90 Kg185 CMNoNoNo1Pro & Farm875,000$750,000$750,000$642,857$0$0$NoLien
Daniel O'ReganTORONTO Marlies (TOR)C261/30/1994Yes82 Kg175 CMNoNoNo3Pro & Farm750,000$642,857$750,000$642,857$0$0$No750,000$750,000$
Dominic ToninatoTORONTO Marlies (TOR)C263/9/1994Yes87 Kg188 CMNoNoNo3Pro & Farm750,000$642,857$750,000$642,857$0$0$No750,000$750,000$
Henrik BorgstromTORONTO Marlies (TOR)C238/6/1997No90 Kg191 CMNoNoNo6Pro & Farm1,250,000$1,071,429$750,000$642,857$0$0$No1,250,000$1,250,000$1,250,000$1,250,000$1,250,000$Lien
Isaac RatcliffeTORONTO Marlies (TOR)LW212/15/1999Yes91 Kg198 CMNoNoNo3Pro & Farm750,000$642,857$750,000$642,857$0$0$No750,000$750,000$
Jesper LindgrenTORONTO Marlies (TOR)D235/19/1997Yes75 Kg183 CMNoNoNo3Pro & Farm750,000$642,857$750,000$642,857$0$0$No750,000$750,000$
John QuennevilleTORONTO Marlies (TOR)C244/16/1996Yes89 Kg185 CMNoNoNo3Pro & Farm750,000$642,857$750,000$642,857$0$0$No750,000$750,000$
Jordan KyrouTORONTO Marlies (TOR)C225/5/1998Yes80 Kg183 CMNoNoNo3Pro & Farm750,000$642,857$750,000$642,857$0$0$No750,000$750,000$
Lukas VejdemoTORONTO Marlies (TOR)C241/25/1996Yes88 Kg188 CMNoNoNo3Pro & Farm750,000$642,857$750,000$642,857$0$0$No750,000$750,000$
Marcus HogbergTORONTO Marlies (TOR)G2511/25/1994Yes95 Kg196 CMNoNoNo3Pro & Farm750,000$642,857$750,000$642,857$0$0$No750,000$750,000$
Martin FehervaryTORONTO Marlies (TOR)D2010/6/1999Yes91 Kg188 CMNoNoNo6Pro & Farm800,000$685,714$750,000$642,857$0$0$No800,000$800,000$800,000$800,000$800,000$
Matthew PhillipsTORONTO Marlies (TOR)RW224/6/1998Yes64 Kg170 CMNoNoNo3Pro & Farm750,000$642,857$750,000$642,857$0$0$No750,000$750,000$
Nick EbertTORONTO Marlies (TOR)D265/11/1994No91 Kg183 CMNoNoNo1Pro & Farm750,000$642,857$750,000$642,857$0$0$NoLien
Paul BittnerTORONTO Marlies (TOR)C/LW2311/4/1996Yes93 Kg196 CMNoNoNo3Pro & Farm750,000$642,857$750,000$642,857$0$0$No750,000$750,000$
Rasmus AsplundTORONTO Marlies (TOR)C2212/3/1997Yes86 Kg180 CMNoNoNo3Pro & Farm750,000$642,857$750,000$642,857$0$0$No750,000$750,000$
Ryan CollinsTORONTO Marlies (TOR)D245/6/1996Yes98 Kg196 CMNoNoNo3Pro & Farm750,000$642,857$750,000$642,857$0$0$No750,000$750,000$
Spencer SmallmanTORONTO Marlies (TOR)RW239/9/1996Yes90 Kg185 CMNoNoNo3Pro & Farm750,000$642,857$750,000$642,857$0$0$No750,000$750,000$
Tyson JostTORONTO Marlies (TOR)C223/14/1998No85 Kg180 CMNoNoNo5Pro & Farm1,500,000$1,285,714$1,500,000$1,285,714$0$0$No1,500,000$1,500,000$1,500,000$1,500,000$Lien
Veini VehvilainenTORONTO Marlies (TOR)G232/13/1997Yes82 Kg183 CMNoNoNo3Pro & Farm750,000$642,857$750,000$642,857$0$0$No750,000$750,000$
Ville HussoTORONTO Marlies (TOR)G252/6/1995Yes93 Kg191 CMNoNoNo3Pro & Farm750,000$642,857$750,000$642,857$0$0$No750,000$750,000$
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2423.6789 Kg188 CM3.08853,125$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Adam ErneBrett Ritchie31122
2Paul Bittner26122
3Isaac RatcliffeMatthew Phillips23122
4John Quenneville20122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Ryan Collins31122
226122
3Andrew Welinski23122
4Ryan Collins20122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Adam ErneBrett Ritchie55122
2Paul Bittner45122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Ryan Collins55122
245122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
155122
2Adam Erne45122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Ryan Collins55122
245122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
155122Ryan Collins55122
24512245122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
155122
2Adam Erne45122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Ryan Collins55122
245122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Adam ErneBrett RitchieRyan Collins
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Adam ErneBrett RitchieRyan Collins
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Dominic Toninato, Jordan Kyrou, Lukas VejdemoDominic Toninato, Jordan KyrouLukas Vejdemo
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
, Andrew Welinski, Andrew Welinski,
Tirs de Pénalité
, , , Adam Erne, Brett Ritchie
Gardien
#1 : , #2 : Marcus Hogberg
Lignes d'Attaque Perso. en Prol.
, , , Adam Erne, Brett Ritchie, John Quenneville, John Quenneville, Paul Bittner, Dominic Toninato, Jordan Kyrou, Lukas Vejdemo
Lignes de Défense Perso. en Prol.
, Ryan Collins, , ,


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Total00000000000000000000000000000000000.000000000000000000000000.00%000.00%0000.00%000.00%000.00%000000

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
00N/A0000000000
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
000000000
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
000000000
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
000000000
Derniers 10 Matchs
WLOTWOTL SOWSOL
000000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
000.00%000.00%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
00000000
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
000.00%000.00%000.00%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
000000


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des Billets3515
Assistance0.00%0.00%
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacitéPopularité de l'Équipe
40 0 - 0.00%0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
0$ 2,047,500$ 1,980,000$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 0$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 12 0$ 0$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT