HERSEY Bears

GP: 40 | W: 30 | L: 6 | OTL: 4 | P: 64
GF: 180 | GA: 68 | PP%: 20.97% | PK%: 83.47%
GM : Olivier Savoie | Morale : 99 | Team Overall : 65
Next Games #531 vs WILKIES-BARRIE Penguins
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Jesper Bratt (R)0X100.006242858260839172307267636953525090710
2Sven Andrighetto0X100.006441827963826772307167606956536190680
3Chandler Stephenson (R)0X100.006041817072779065436563726653526490680
4Tage Thompson0XX100.006541806883768863306261606452518090670
5Lukas Sedlak0X100.007342746973747063716363656955534790660
6Josh Jooris0X100.006642806872716861566160656659553690650
7Nick Paul0X100.006943706189658258305760596251516190640
8Marcus Sorensen (R)0X100.005842806762697262306163666752515890630
9Sergey Kalinin (R)0XXX100.006240807178466056635153645464615590600
10Ben Hutton0X100.006342846878827867305757736258545490670
11Mike Reilly (R)0X100.006442836674767576306460596454526090660
12Michal Kempny (R)0X100.006842836669787068305762686854523690650
13Korbinian Holzer0X100.006642805882634258304852646055534887580
14Cody Goloubef0X100.005946625073596357305050605755536290570
15Nikita Nesterov0X100.006841727466475056303937625560487190550
Scratches
1Charles Hudon (R)0X100.007643757863818971447166616753545759700
TEAM AVERAGE100.00654278687271726438595964645553568864
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Peter Budaj100.00706183807479747373677077743290670
2Anders Lindback100.00737380907578767575717160673990670
Scratches
TEAM AVERAGE100.0072678285757975747469716971369067
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Mike Johnston70696870787850CAN60483,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Jesper BrattHERSEY Bears (WSH)LW403032624414059892466523112.20%7101725.43437199900051123051.19%29500111.22040001022
2Marcus SorensenHERSEY Bears (WSH)RW403026563114054492186315513.76%1172318.07391227101000004154.76%4200131.5500000475
3Tage ThompsonHERSEY Bears (WSH)C/RW40163450313008256173521319.25%372518.14471114103000002148.80%75000011.3800000430
4Michal KempnyHERSEY Bears (WSH)D4013344736120434593226813.98%3082120.5455103096000196310.00%000001.1400000224
5Ben HuttonHERSEY Bears (WSH)D40122739412004243102325111.76%5198424.6144842107000097420.00%000000.7900000242
6Mike ReillyHERSEY Bears (WSH)D406293541200492344254813.64%4197424.3617815105000192300.00%000000.7200000115
7Lukas SedlakHERSEY Bears (WSH)C40132235302004570135331069.63%357414.36000060000121268.07%61700001.2200000114
8Chandler StephensonHERSEY Bears (WSH)C409202923200374812229767.38%965916.4817817990111590154.09%81900000.8814000033
9Sven AndrighettoHERSEY Bears (WSH)RW4072027231203841133351005.26%366016.5215618990117613057.45%4700000.8211000000
10Sergey KalininHERSEY Bears (WSH)C/LW/RW401213252840123599226812.12%154913.7400000000003075.68%3700010.9100000101
11Josh JoorisHERSEY Bears (WSH)C401213252340363174125416.22%33067.6700023000001061.76%34000001.6300000122
12Korbinian HolzerHERSEY Bears (WSH)D40319223535542164612366.52%3479419.863251793000379000.00%000000.5500000001
13Nick PaulHERSEY Bears (WSH)LW4010112128355412384225511.90%558114.55000000001250050.98%5100010.7200010101
14Nikita NesterovHERSEY Bears (WSH)D40218202920052183413215.88%3162515.6400001000235000.00%000000.6400000100
15Cody GoloubefHERSEY Bears (WSH)D403101330160381330101610.00%2561615.4100009101214100.00%000000.4200000011
Team Total or Average600178328506473276106706001633447121610.90%2571061517.692649752019271232368828856.50%299800270.9529010282631
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Peter BudajHERSEY Bears (WSH)4030640.9241.592423210648410020.84613400140
Team Total or Average4030640.9241.592423210648410020.84613400140


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Anders LindbackHERSEY Bears (WSH)G305/3/1988No98 Kg198 CMNoNoNo3UFAPro & Farm650,000$0$0$NoLink
Ben HuttonHERSEY Bears (WSH)D254/20/1993No94 Kg188 CMNoNoNo3RFAPro & Farm2,016,000$0$0$NoLink
Chandler StephensonHERSEY Bears (WSH)C244/22/1994Yes92 Kg183 CMNoNoNo3RFAPro & Farm750,000$0$0$NoLink
Charles HudonHERSEY Bears (WSH)LW246/23/1994Yes85 Kg178 CMNoNoNo3RFAPro & Farm750,000$0$0$NoLink
Cody GoloubefHERSEY Bears (WSH)D2811/30/1989No91 Kg185 CMNoNoNo2UFAPro & Farm1,000,000$0$0$NoLink
Jesper BrattHERSEY Bears (WSH)LW207/30/1998Yes80 Kg178 CMNoNoNo3RFAPro & Farm750,000$0$0$NoLink
Josh JoorisHERSEY Bears (WSH)C287/14/1990No90 Kg185 CMNoNoNo1UFAPro & Farm850,000$0$0$NoLink
Korbinian HolzerHERSEY Bears (WSH)D302/16/1988No97 Kg191 CMNoNoNo2UFAPro & Farm900,000$0$0$NoLink
Lukas SedlakHERSEY Bears (WSH)C252/25/1993No93 Kg183 CMNoNoNo3RFAPro & Farm900,000$0$0$NoLink
Marcus SorensenHERSEY Bears (WSH)RW264/7/1992Yes80 Kg180 CMNoNoNo3RFAPro & Farm750,000$0$0$NoLink
Michal KempnyHERSEY Bears (WSH)D279/8/1990Yes88 Kg183 CMNoNoNo3RFAPro & Farm750,000$0$0$NoLink
Mike ReillyHERSEY Bears (WSH)D257/13/1993Yes89 Kg188 CMNoNoNo3RFAPro & Farm750,000$0$0$NoLink
Nick PaulHERSEY Bears (WSH)LW233/20/1995No105 Kg193 CMNoNoNo3RFAPro & Farm750,000$0$0$NoLink
Nikita NesterovHERSEY Bears (WSH)D253/28/1993No87 Kg180 CMNoNoNo1RFAPro & Farm1,000,000$0$0$No
Peter BudajHERSEY Bears (WSH)G359/18/1982No89 Kg185 CMNoNoNo1UFAPro & Farm1,000,000$0$0$NoLink
Sergey KalininHERSEY Bears (WSH)C/LW/RW273/17/1991Yes91 Kg191 CMNoNoNo1RFAPro & Farm750,000$0$0$No
Sven AndrighettoHERSEY Bears (WSH)RW253/21/1993No85 Kg178 CMNoNoNo1RFAPro & Farm750,000$0$0$NoLink
Tage ThompsonHERSEY Bears (WSH)C/RW2010/30/1997No93 Kg196 CMNoNoNo3RFAPro & Farm750,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1825.9490 Kg185 CM2.33878,667$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jesper BrattChandler StephensonSven Andrighetto31122
2Tage ThompsonMarcus Sorensen26122
3Nick PaulLukas SedlakSergey Kalinin23122
4Jesper BrattJosh Jooris20122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ben HuttonMike Reilly31122
2Michal KempnyKorbinian Holzer26122
3Cody GoloubefNikita Nesterov23122
4Ben HuttonMike Reilly20122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jesper BrattChandler StephensonSven Andrighetto55122
2Tage ThompsonMarcus Sorensen45122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Ben HuttonMike Reilly55122
2Michal KempnyKorbinian Holzer45122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Jesper Bratt55122
2Chandler StephensonSven Andrighetto45122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Ben HuttonMike Reilly55122
2Michal KempnyKorbinian Holzer45122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Jesper Bratt55122Ben HuttonMike Reilly55122
245122Michal KempnyKorbinian Holzer45122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Jesper Bratt55122
2Chandler StephensonSven Andrighetto45122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ben HuttonMike Reilly55122
2Michal KempnyKorbinian Holzer45122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Jesper BrattChandler StephensonSven AndrighettoBen HuttonMike Reilly
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Jesper BrattChandler StephensonSven AndrighettoBen HuttonMike Reilly
Extra Forwards
Normal PowerPlayPenalty Kill
Lukas Sedlak, Josh Jooris, Nick PaulLukas Sedlak, Josh JoorisNick Paul
Extra Defensemen
Normal PowerPlayPenalty Kill
Cody Goloubef, Nikita Nesterov, Michal KempnyCody GoloubefNikita Nesterov, Michal Kempny
Penalty Shots
Jesper Bratt, , Chandler Stephenson, Sven Andrighetto, Tage Thompson
Goalie
#1 : Peter Budaj, #2 : Anders Lindback
Custom OT Lines Forwards
Jesper Bratt, , Chandler Stephenson, Sven Andrighetto, Tage Thompson, Lukas Sedlak, Lukas Sedlak, Josh Jooris, Nick Paul, Marcus Sorensen, Sergey Kalinin
Custom OT Lines Defensemen
Ben Hutton, Mike Reilly, Michal Kempny, Korbinian Holzer, Cody Goloubef


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1BROOKLYN Wolfpack33000000340341100000014014220000002002061.000346397038064333277528575521277314423266.67%70100.00%0859143259.99%508102749.46%34761056.89%1206931763243455246
2CLEVELAND Monsters321000006602110000046-21100000020240.66769150180643337652857552127872736567228.57%17382.35%0859143259.99%508102749.46%34761056.89%1206931763243455246
3COLORADO Eagles32000001862210000015501100000031250.833815230080643336852857552127741920448450.00%9188.89%0859143259.99%508102749.46%34761056.89%1206931763243455246
4CORNWALL Aces33000000331321100000011011220000002212161.00033629502806433317952857552127271014517457.14%60100.00%1859143259.99%508102749.46%34761056.89%1206931763243455246
5LEHIGH VALLEY Phantoms2110000056-1110000003211010000024-220.50051015008064333385285755212766142833300.00%14285.71%0859143259.99%508102749.46%34761056.89%1206931763243455246
6MANITOBA Moose2200000011110110000005051100000061541.0001121320180643331755285755212774229000.00%10100.00%0859143259.99%508102749.46%34761056.89%1206931763243455246
7MONT-LAURIER Sommet11000000312110000003120000000000021.0003690080643332752857552127186109200.00%50100.00%0859143259.99%508102749.46%34761056.89%1206931763243455246
8PROVIDENCE Bruins631010102012832000010116531101000963100.83320365601806433319952857552127161403811025416.00%15473.33%0859143259.99%508102749.46%34761056.89%1206931763243455246
9PV Sharapovas11000000312110000003120000000000021.00035800806433330528575521272311212600.00%10100.00%0859143259.99%508102749.46%34761056.89%1206931763243455246
10SAN DIEGO Gulls11000000312000000000001100000031221.0003470080643332852857552127188615400.00%30100.00%0859143259.99%508102749.46%34761056.89%1206931763243455246
11STOCKTON Flames11000000211000000000001100000021121.0002240080643333552857552127183421500.00%20100.00%0859143259.99%508102749.46%34761056.89%1206931763243455246
12TORONTO Marlies11000000532110000005320000000000021.0005101500806433344528575521271778187228.57%30100.00%0859143259.99%508102749.46%34761056.89%1206931763243455246
13TUSCON Roadrunners21000010633000000000002100001063341.00069150080643333652857552127651425335120.00%7185.71%0859143259.99%508102749.46%34761056.89%1206931763243455246
Total40276012221806811220133002118840482014301011922864640.80018032850821080643331638528575521278432572786701242620.97%1212083.47%1859143259.99%508102749.46%34761056.89%1206931763243455246
15UTICA Comets823002012025-540200200916-742100001119270.43820385820806433322252857552127229855514238615.79%24866.67%0859143259.99%508102749.46%34761056.89%1206931763243455246
16WILKIES-BARRIE Penguins330000002112022000000150151100000061561.0002138590280643332045285755212726616554125.00%7185.71%0859143259.99%508102749.46%34761056.89%1206931763243455246
_Since Last GM Reset40276012221806811220133002118840482014301011922864640.80018032850821080643331638528575521278432572786701242620.97%1212083.47%1859143259.99%508102749.46%34761056.89%1206931763243455246
_Vs Conference27165012121125161147300211583325139201001541836400.741112203315278064333107452857552127602188185464891921.35%821779.27%0859143259.99%508102749.46%34761056.89%1206931763243455246
_Vs Division131350121134313563002101217-58720100122148331.2693459932080643333485285755212734811610022054712.96%41978.05%0859143259.99%508102749.46%34761056.89%1206931763243455246

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4064W81803285081638843257278670210
All Games
GPWLOTWOTL SOWSOLGFGA
40276122218068
Home Games
GPWLOTWOTL SOWSOLGFGA
2013302118840
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2014310119228
Last 10 Games
WLOTWOTL SOWSOL
810100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1242620.97%1212083.47%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
528575521278064333
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
859143259.99%508102749.46%34761056.89%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1206931763243455246


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2019-01-2411UTICA Comets4HERSEY Bears3LXBoxScore
3 - 2019-01-2526HERSEY Bears4UTICA Comets2WBoxScore
5 - 2019-01-2737UTICA Comets5HERSEY Bears3LBoxScore
6 - 2019-01-2850HERSEY Bears2UTICA Comets3LXXBoxScore
8 - 2019-01-3065UTICA Comets4HERSEY Bears1LBoxScore
9 - 2019-01-3178WILKIES-BARRIE Penguins0HERSEY Bears7WBoxScore
10 - 2019-02-0188HERSEY Bears2CLEVELAND Monsters0WBoxScore
13 - 2019-02-04102HERSEY Bears1UTICA Comets3LBoxScore
14 - 2019-02-05117CLEVELAND Monsters4HERSEY Bears0LBoxScore
15 - 2019-02-06133PROVIDENCE Bruins0HERSEY Bears3WBoxScore
16 - 2019-02-07142HERSEY Bears5PROVIDENCE Bruins2WBoxScore
18 - 2019-02-09158CLEVELAND Monsters2HERSEY Bears4WBoxScore
19 - 2019-02-10167HERSEY Bears9CORNWALL Aces1WBoxScore
21 - 2019-02-12182COLORADO Eagles1HERSEY Bears2WBoxScore
22 - 2019-02-13194HERSEY Bears6WILKIES-BARRIE Penguins1WBoxScore
23 - 2019-02-14200HERSEY Bears12BROOKLYN Wolfpack0WBoxScore
25 - 2019-02-16222BROOKLYN Wolfpack0HERSEY Bears14WBoxScore
27 - 2019-02-18236HERSEY Bears3TUSCON Roadrunners1WBoxScore
28 - 2019-02-19245HERSEY Bears0PROVIDENCE Bruins1LBoxScore
29 - 2019-02-20254MONT-LAURIER Sommet1HERSEY Bears3WBoxScore
31 - 2019-02-22271PROVIDENCE Bruins3HERSEY Bears4WBoxScore
32 - 2019-02-23278HERSEY Bears8BROOKLYN Wolfpack0WBoxScore
34 - 2019-02-25296WILKIES-BARRIE Penguins0HERSEY Bears8WBoxScore
35 - 2019-02-26312HERSEY Bears3SAN DIEGO Gulls1WBoxScore
37 - 2019-02-28325TORONTO Marlies3HERSEY Bears5WBoxScore
38 - 2019-03-01338HERSEY Bears13CORNWALL Aces0WBoxScore
40 - 2019-03-03348COLORADO Eagles4HERSEY Bears3LXXBoxScore
41 - 2019-03-04362LEHIGH VALLEY Phantoms2HERSEY Bears3WBoxScore
43 - 2019-03-06376HERSEY Bears6MANITOBA Moose1WBoxScore
44 - 2019-03-07388HERSEY Bears2STOCKTON Flames1WBoxScore
46 - 2019-03-09400HERSEY Bears2LEHIGH VALLEY Phantoms4LBoxScore
47 - 2019-03-10413UTICA Comets3HERSEY Bears2LXBoxScore
49 - 2019-03-12427PROVIDENCE Bruins3HERSEY Bears4WXXBoxScore
50 - 2019-03-13440HERSEY Bears4UTICA Comets1WBoxScore
51 - 2019-03-14451HERSEY Bears3COLORADO Eagles1WBoxScore
52 - 2019-03-15460PV Sharapovas1HERSEY Bears3WBoxScore
54 - 2019-03-17478HERSEY Bears4PROVIDENCE Bruins3WXBoxScore
55 - 2019-03-18489CORNWALL Aces0HERSEY Bears11WBoxScore
57 - 2019-03-20502HERSEY Bears3TUSCON Roadrunners2WXXBoxScore
58 - 2019-03-21516MANITOBA Moose0HERSEY Bears5WBoxScore
60 - 2019-03-23531WILKIES-BARRIE Penguins-HERSEY Bears-
62 - 2019-03-25547HERSEY Bears-HOLLYWOOD Oscar-
63 - 2019-03-26555LAVAL Rockets-HERSEY Bears-
64 - 2019-03-27573HOLLYWOOD Oscar-HERSEY Bears-
66 - 2019-03-29585HERSEY Bears-WILKIES-BARRIE Penguins-
67 - 2019-03-30600MILWAUKEE Admirals-HERSEY Bears-
69 - 2019-04-01612HERSEY Bears-IOWA Wild-
70 - 2019-04-02623HERSEY Bears-BRIDGEPORT Sound Tigers-
71 - 2019-04-03637STOCKTON Flames-HERSEY Bears-
72 - 2019-04-04646HERSEY Bears-LAVAL Rockets-
74 - 2019-04-06663SAN DIEGO Gulls-HERSEY Bears-
75 - 2019-04-07674HERSEY Bears-WILKIES-BARRIE Penguins-
77 - 2019-04-09687COLORADO Eagles-HERSEY Bears-
78 - 2019-04-10702HERSEY Bears-PV Sharapovas-
79 - 2019-04-11713TUSCON Roadrunners-HERSEY Bears-
81 - 2019-04-13730IOWA Wild-HERSEY Bears-
82 - 2019-04-14737HERSEY Bears-MILWAUKEE Admirals-
83 - 2019-04-15756SYRACUSE Crunch-HERSEY Bears-
84 - 2019-04-16764HERSEY Bears-CLEVELAND Monsters-
87 - 2019-04-19783CHICAGO Wolves-HERSEY Bears-
88 - 2019-04-20793HERSEY Bears-ROCKFORD IceHogs-
89 - 2019-04-21806HERSEY Bears-LAVAL Rockets-
90 - 2019-04-22817BROOKLYN Wolfpack-HERSEY Bears-
92 - 2019-04-24830HERSEY Bears-BROOKLYN Wolfpack-
94 - 2019-04-26842BROOKLYN Wolfpack-HERSEY Bears-
95 - 2019-04-27849HERSEY Bears-VICTORIAVILLE Tigres-
96 - 2019-04-28865HERSEY Bears-SYRACUSE Crunch-
97 - 2019-04-29876VICTORIAVILLE Tigres-HERSEY Bears-
99 - 2019-05-01893HERSEY Bears-CLEVELAND Monsters-
100 - 2019-05-02906ROCKFORD IceHogs-HERSEY Bears-
102 - 2019-05-04916HERSEY Bears-UTICA Comets-
103 - 2019-05-05931BRIDGEPORT Sound Tigers-HERSEY Bears-
105 - 2019-05-07948HERSEY Bears-CHICAGO Wolves-
107 - 2019-05-09960BELLEVILLE Senators-HERSEY Bears-
108 - 2019-05-10974HERSEY Bears-TORONTO Marlies-
109 - 2019-05-11983TORONTO Marlies-HERSEY Bears-
111 - 2019-05-13998UTICA Comets-HERSEY Bears-
Trade Deadline --- Trades can’t be done after this day is simulated!
113 - 2019-05-151014HERSEY Bears-BELLEVILLE Senators-
114 - 2019-05-161025CLEVELAND Monsters-HERSEY Bears-
115 - 2019-05-171034HERSEY Bears-MONT-LAURIER Sommet-
117 - 2019-05-191044HERSEY Bears-MONT-LAURIER Sommet-
119 - 2019-05-211063UTICA Comets-HERSEY Bears-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
21 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
804,576$ 1,581,600$ 1,581,600$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 764,440$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 62 13,872$ 860,064$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
2878175900200207665-45839102900000108312-204397300020099353-25434207380587001035450023047387847820564916015210585411.85%12558.33%0523130240.17%560207427.00%488151332.25%10026942897487781293
30823338012262881979141181701023151925941152100203137105326628844172921113987594262085988487131262776920411621562918.59%831878.31%0861198043.48%882263633.46%450118837.88%199015172074497899442
31824519063453051801254121110323115896624124803114147846390305549854013142757814279392091892863193957564914772274921.59%2693487.36%31486266455.78%1165231350.37%663122154.30%232217261675534990525
32402760122218068112201330021188404820143010119228646418032850821080643331638528575521278432572786701242620.97%1212083.47%1859143259.99%508102749.46%34761056.89%1206931763243455246
Total Regular Season2821221220898139801110-130141626004465505540-35141606204528475570-95254980169826784344642802202193553045316131021211105832021183436756110518.72%4857784.12%43729737850.54%3115805038.70%1948453242.98%652248707411176331261508
Playoff
3040400000315-122020000025-320200000110-903470010207918243432004714391317.69%60100.00%0369836.73%5618630.11%236734.33%8459117274822
Total Playoff40400000315-122020000025-320200000110-903470010207918243432004714391317.69%60100.00%0369836.73%5618630.11%236734.33%8459117274822