HOLLYWOOD Oscar

GP: 78 | W: 10 | L: 67 | OTL: 1 | P: 21
GF: 92 | GA: 412 | PP%: 2.17% | PK%: 84.21%
GM : Dom Mailloux | Morale : 77 | Team Overall : 63
Next Games #1028 vs UTICA Comets
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Kyle Clifford0X100.008644727179766764306365597171666595690
2Jordan Nolan0XX100.007646677083748663306262576864594099680
3Michael Mersch0X100.006941756081728262506262606251515899650
4Ty Rattie0X100.006042776470758465536265606652517479650
5Emile Poirier0X100.006043716074598258506054605450508099610
6Anthony Richard0X100.005444686041659258505660606050504499600
7Robin Kovacs (R)0X100.004635797665464953305047525354509599540
8Chad Ruhwedel0X100.007341856666776167305661696854523679640
9Rinat Valiev0X100.006743735184526458305049625750506699580
Scratches
TEAM AVERAGE100.00664274647166746139585860625553629463
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Laurent Brossoit100.00747880847677767575727252634799670
2Jhonas Enroth100.00665969577368697274697470663157620
Scratches
TEAM AVERAGE100.0070697571757373747571736165397865
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Pascal Vincent68686868727276CAN472330,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Chad RuhwedelHOLLYWOOD Oscar (SEA)D78232346-825203641111815911812.71%403172122.0700041100000310.00%000020.5312000343
2Ty RattieHOLLYWOOD Oscar (SEA)RW7838846-4120139842727821013.97%14786711.1200000000001070.91%5500031.0612000322
Team Total or Average156613192-8664050319545313732813.47%550258816.59000411000004170.91%5500050.7124000665
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jhonas EnrothHOLLYWOOD Oscar (SEA)78106710.9295.03452925138053230000.920257802273
Team Total or Average78106710.9295.03452925138053230000.920257802273


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Anthony RichardHOLLYWOOD Oscar (SEA)C2112/20/1996No74 Kg155 CMNoNoNo1RFAPro & Farm750,000$0$0$NoLink
Chad RuhwedelHOLLYWOOD Oscar (SEA)D285/7/1990No87 Kg180 CMNoNoNo1UFAPro & Farm750,000$0$0$NoLink
Emile PoirierHOLLYWOOD Oscar (SEA)LW2312/14/1994No89 Kg188 CMNoNoNo1RFAPro & Farm750,000$0$0$NoLink
Jhonas EnrothHOLLYWOOD Oscar (SEA)G306/25/1988No80 Kg178 CMNoNoNo1UFAPro & Farm2,000,000$0$0$No
Jordan NolanHOLLYWOOD Oscar (SEA)C/RW296/23/1989No100 Kg191 CMNoNoNo1UFAPro & Farm900,000$0$0$NoLink
Kyle CliffordHOLLYWOOD Oscar (SEA)LW271/13/1991No96 Kg188 CMNoNoNo1RFAPro & Farm1,600,000$0$0$NoLink
Laurent BrossoitHOLLYWOOD Oscar (SEA)G253/23/1993No93 Kg191 CMNoNoNo3RFAPro & Farm1,500,000$0$0$NoLink
Michael MerschHOLLYWOOD Oscar (SEA)LW2510/2/1992No97 Kg188 CMNoNoNo5RFAPro & Farm750,000$0$0$NoLink
Rinat ValievHOLLYWOOD Oscar (SEA)D235/11/1995No98 Kg191 CMNoNoNo1RFAPro & Farm750,000$0$0$NoLink
Robin KovacsHOLLYWOOD Oscar (SEA)LW2111/16/1996Yes80 Kg183 CMNoNoNo1RFAPro & Farm750,000$0$0$No
Ty RattieHOLLYWOOD Oscar (SEA)RW252/5/1993No84 Kg180 CMNoNoNo1RFAPro & Farm750,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1125.1889 Kg183 CM1.551,022,727$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
131122
226122
323122
4Ty Rattie20122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
131122
2Chad Ruhwedel26122
323122
4Chad Ruhwedel20122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
155122
245122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
155122
2Chad Ruhwedel45122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
155122
245122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
155122
2Chad Ruhwedel45122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
15512255122
245122Chad Ruhwedel45122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
155122
245122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
155122
2Chad Ruhwedel45122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
, , ,
Extra Defensemen
Normal PowerPlayPenalty Kill
Chad Ruhwedel, , Chad RuhwedelChad Ruhwedel,
Penalty Shots
, , , ,
Goalie
#1 : Jhonas Enroth, #2 :
Custom OT Lines Forwards
, , , , , , , , , Ty Rattie,
Custom OT Lines Defensemen
, , Chad Ruhwedel, ,


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1BELLEVILLE Senators2020000008-81010000003-31010000005-500.000000003727254114464434284213240419600.00%20100.00%0405125332.32%652440914.79%202111118.18%7965323203462696249
2BRIDGEPORT Sound Tigers20200000311-81010000028-61010000013-200.000347003727254274464434284214034419300.00%20100.00%0405125332.32%652440914.79%202111118.18%7965323203462696249
3BROOKLYN Wolfpack2200000013310110000007251100000061541.000132235003727254126446443428426313459000.00%10100.00%0405125332.32%652440914.79%202111118.18%7965323203462696249
4CHICAGO Wolves20200000014-141010000004-410100000010-1000.000000003727254114464434284216439615100.00%30100.00%0405125332.32%652440914.79%202111118.18%7965323203462696249
5CLEVELAND Monsters30300000218-1620200000111-101010000017-600.000235003727254244464434284224584427200.00%2150.00%0405125332.32%652440914.79%202111118.18%7965323203462696249
6COLORADO Eagles30300000113-121010000003-320200000110-900.000123003727254154464434284221483021500.00%000.00%0405125332.32%652440914.79%202111118.18%7965323203462696249
7CORNWALL Aces211000001011-1110000008441010000027-520.500101727003727254674464434284211634442100.00%20100.00%0405125332.32%652440914.79%202111118.18%7965323203462696249
8HERSEY Bears2020000009-91010000004-41010000005-500.00000000372725434464434284217240218200.00%10100.00%0405125332.32%652440914.79%202111118.18%7965323203462696249
9IOWA Wild60600000637-3130300000417-1330300000220-1800.000612180037272545744644342842567156466200.00%20100.00%0405125332.32%652440914.79%202111118.18%7965323203462696249
10LAVAL Rockets30300000017-171010000003-320200000014-1400.000000003727254214464434284222375223500.00%10100.00%0405125332.32%652440914.79%202111118.18%7965323203462696249
11LEHIGH VALLEY Phantoms60600000442-3830300000220-1830300000222-2000.000471100372725436446443428425031408431500.00%4250.00%0405125332.32%652440914.79%202111118.18%7965323203462696249
12MANITOBA Moose73101011211564100101115873210000067-1110.786213758013727254465446443428422185802263133.33%000.00%0405125332.32%652440914.79%202111118.18%7965323203462696249
13MILWAUKEE Admirals20200000011-111010000004-41010000007-700.000000003727254214464434284210637011400.00%000.00%0405125332.32%652440914.79%202111118.18%7965323203462696249
14MONT-LAURIER Sommet60600000429-2530300000116-1530300000313-1000.00048120037272546444644342842453123852500.00%30100.00%0405125332.32%652440914.79%202111118.18%7965323203462696249
15PROVIDENCE Bruins20200000212-101010000006-61010000026-400.000224003727254174464434284216152014300.00%000.00%0405125332.32%652440914.79%202111118.18%7965323203462696249
16PV Sharapovas20200000214-121010000028-61010000006-600.000246003727254164464434284212944013400.00%000.00%0405125332.32%652440914.79%202111118.18%7965323203462696249
17ROCKFORD IceHogs20200000015-151010000009-91010000006-600.000000003727254174464434284217642210100.00%10100.00%0405125332.32%652440914.79%202111118.18%7965323203462696249
18SAN DIEGO Gulls30300000010-101010000003-32020000007-700.0000000037272542044644342842210561047100.00%50100.00%0405125332.32%652440914.79%202111118.18%7965323203462696249
19STOCKTON Flames60600000641-3530300000326-2330300000315-1200.0006101600372725445446443428424771171241300.00%4175.00%0405125332.32%652440914.79%202111118.18%7965323203462696249
20SYRACUSE Crunch11000000716110000007160000000000021.000712190037272549844644342842165021000.00%000.00%0405125332.32%652440914.79%202111118.18%7965323203462696249
21TORONTO Marlies30300000314-112020000037-41010000007-700.0003580037272542744644342842239800238112.50%000.00%0405125332.32%652440914.79%202111118.18%7965323203462696249
22TUSCON Roadrunners20200000120-1910100000010-1010100000110-900.000112003727254204464434284220551411200.00%10100.00%0405125332.32%652440914.79%202111118.18%7965323203462696249
Total787670201192412-320394320101157197-140393350100035215-180210.1359215724901372725413344464434284255821601999389222.17%38684.21%0405125332.32%652440914.79%202111118.18%7965323203462696249
24UTICA Comets1010000006-6000000000001010000006-600.000000003727254544644342842883004200.00%000.00%0405125332.32%652440914.79%202111118.18%7965323203462696249
25VICTORIAVILLE Tigres60600000335-3230300000217-1530300000118-1700.000347003727254584464434284248514321661100.00%4250.00%0405125332.32%652440914.79%202111118.18%7965323203462696249
26WILKIES-BARRIE Penguins2010100046-21010000003-31000100043120.500471100372725463446443428428025047300.00%000.00%0405125332.32%652440914.79%202111118.18%7965323203462696249
_Since Last GM Reset787670201192412-320394320101157197-140393350100035215-180210.1359215724901372725413344464434284255821601999389222.17%38684.21%0405125332.32%652440914.79%202111118.18%7965323203462696249
_Vs Conference495410101167267-200263200101147137-90232210000020130-110150.15367117184013727254964446443428423540991656236023.33%22577.27%0405125332.32%652440914.79%202111118.18%7965323203462696249
_Vs Division15331010112477-538115010112032-12721600000445-41110.367244064003727254257446443428421016330101552713.70%50100.00%0405125332.32%652440914.79%202111118.18%7965323203462696249

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
7821L4921572491334558216019993801
All Games
GPWLOTWOTL SOWSOLGFGA
78767201192412
Home Games
GPWLOTWOTL SOWSOLGFGA
39432101157197
Visitor Games
GPWLOTWOTL SOWSOLGFGA
39335100035215
Last 10 Games
WLOTWOTL SOWSOL
190000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
9222.17%38684.21%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
446443428423727254
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
405125332.32%652440914.79%202111118.18%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
7965323203462696249


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2019-01-237HOLLYWOOD Oscar1IOWA Wild8LBoxScore
2 - 2019-01-2417VICTORIAVILLE Tigres8HOLLYWOOD Oscar1LBoxScore
4 - 2019-01-2630HOLLYWOOD Oscar0MANITOBA Moose4LBoxScore
5 - 2019-01-2745IOWA Wild5HOLLYWOOD Oscar0LBoxScore
7 - 2019-01-2958HOLLYWOOD Oscar0MONT-LAURIER Sommet3LBoxScore
8 - 2019-01-3067MONT-LAURIER Sommet2HOLLYWOOD Oscar1LBoxScore
10 - 2019-02-0183LEHIGH VALLEY Phantoms4HOLLYWOOD Oscar0LBoxScore
13 - 2019-02-04104HOLLYWOOD Oscar0VICTORIAVILLE Tigres7LBoxScore
14 - 2019-02-05113MANITOBA Moose3HOLLYWOOD Oscar4WXBoxScore
15 - 2019-02-06127HOLLYWOOD Oscar2MONT-LAURIER Sommet5LBoxScore
16 - 2019-02-07139STOCKTON Flames7HOLLYWOOD Oscar2LBoxScore
17 - 2019-02-08151HOLLYWOOD Oscar1STOCKTON Flames6LBoxScore
19 - 2019-02-10164HOLLYWOOD Oscar0LAVAL Rockets6LBoxScore
21 - 2019-02-12177MANITOBA Moose3HOLLYWOOD Oscar2LXXBoxScore
22 - 2019-02-13192CLEVELAND Monsters7HOLLYWOOD Oscar1LBoxScore
23 - 2019-02-14202HOLLYWOOD Oscar1LEHIGH VALLEY Phantoms10LBoxScore
25 - 2019-02-16218LEHIGH VALLEY Phantoms10HOLLYWOOD Oscar1LBoxScore
26 - 2019-02-17231PROVIDENCE Bruins6HOLLYWOOD Oscar0LBoxScore
28 - 2019-02-19242HOLLYWOOD Oscar0STOCKTON Flames3LBoxScore
30 - 2019-02-21262IOWA Wild8HOLLYWOOD Oscar3LBoxScore
32 - 2019-02-23274HOLLYWOOD Oscar0IOWA Wild6LBoxScore
33 - 2019-02-24288MONT-LAURIER Sommet9HOLLYWOOD Oscar0LBoxScore
34 - 2019-02-25294HOLLYWOOD Oscar0COLORADO Eagles7LBoxScore
35 - 2019-02-26309HOLLYWOOD Oscar4WILKIES-BARRIE Penguins3WXBoxScore
37 - 2019-02-28322CORNWALL Aces4HOLLYWOOD Oscar8WBoxScore
38 - 2019-03-01337WILKIES-BARRIE Penguins3HOLLYWOOD Oscar0LBoxScore
40 - 2019-03-03350HOLLYWOOD Oscar2PROVIDENCE Bruins6LBoxScore
41 - 2019-03-04364HOLLYWOOD Oscar2CORNWALL Aces7LBoxScore
43 - 2019-03-06374HOLLYWOOD Oscar0LAVAL Rockets8LBoxScore
44 - 2019-03-07385TUSCON Roadrunners10HOLLYWOOD Oscar0LBoxScore
46 - 2019-03-09403STOCKTON Flames8HOLLYWOOD Oscar1LBoxScore
48 - 2019-03-11417MANITOBA Moose0HOLLYWOOD Oscar6WBoxScore
49 - 2019-03-12425HOLLYWOOD Oscar1COLORADO Eagles3LBoxScore
50 - 2019-03-13439HOLLYWOOD Oscar0SAN DIEGO Gulls1LR3BoxScore
51 - 2019-03-14455STOCKTON Flames11HOLLYWOOD Oscar0LBoxScore
53 - 2019-03-16467HOLLYWOOD Oscar0MILWAUKEE Admirals7LBoxScore
54 - 2019-03-17479COLORADO Eagles3HOLLYWOOD Oscar0LBoxScore
56 - 2019-03-19495BRIDGEPORT Sound Tigers8HOLLYWOOD Oscar2LR3BoxScore
57 - 2019-03-20504HOLLYWOOD Oscar1CLEVELAND Monsters7LBoxScore
58 - 2019-03-21521BROOKLYN Wolfpack2HOLLYWOOD Oscar7WBoxScore
60 - 2019-03-23528HOLLYWOOD Oscar4MANITOBA Moose2WBoxScore
62 - 2019-03-25547HERSEY Bears4HOLLYWOOD Oscar0LBoxScore
63 - 2019-03-26556HOLLYWOOD Oscar2MANITOBA Moose1WBoxScore
64 - 2019-03-27573HOLLYWOOD Oscar0HERSEY Bears5LBoxScore
65 - 2019-03-28579HOLLYWOOD Oscar6BROOKLYN Wolfpack1WBoxScore
67 - 2019-03-30593PV Sharapovas8HOLLYWOOD Oscar2LBoxScore
68 - 2019-03-31608SAN DIEGO Gulls3HOLLYWOOD Oscar0LR3BoxScore
69 - 2019-04-01621HOLLYWOOD Oscar1TUSCON Roadrunners10LBoxScore
71 - 2019-04-03632HOLLYWOOD Oscar0CHICAGO Wolves10LBoxScore
72 - 2019-04-04644BELLEVILLE Senators3HOLLYWOOD Oscar0LBoxScore
74 - 2019-04-06660LAVAL Rockets3HOLLYWOOD Oscar0LBoxScore
75 - 2019-04-07673HOLLYWOOD Oscar2STOCKTON Flames6LBoxScore
77 - 2019-04-09688MONT-LAURIER Sommet5HOLLYWOOD Oscar0LBoxScore
78 - 2019-04-10703CHICAGO Wolves4HOLLYWOOD Oscar0LBoxScore
79 - 2019-04-11714HOLLYWOOD Oscar0SAN DIEGO Gulls6LR3BoxScore
81 - 2019-04-13731LEHIGH VALLEY Phantoms6HOLLYWOOD Oscar1LBoxScore
82 - 2019-04-14741HOLLYWOOD Oscar0LEHIGH VALLEY Phantoms8LBoxScore
83 - 2019-04-15753HOLLYWOOD Oscar1LEHIGH VALLEY Phantoms4LBoxScore
85 - 2019-04-17767ROCKFORD IceHogs9HOLLYWOOD Oscar0LBoxScore
86 - 2019-04-18779HOLLYWOOD Oscar1IOWA Wild6LBoxScore
87 - 2019-04-19790CLEVELAND Monsters4HOLLYWOOD Oscar0LBoxScore
88 - 2019-04-20796HOLLYWOOD Oscar1MONT-LAURIER Sommet5LBoxScore
91 - 2019-04-23818MANITOBA Moose2HOLLYWOOD Oscar3WXXBoxScore
93 - 2019-04-25833MILWAUKEE Admirals4HOLLYWOOD Oscar0LBoxScore
94 - 2019-04-26848HOLLYWOOD Oscar0PV Sharapovas6LBoxScore
95 - 2019-04-27859IOWA Wild4HOLLYWOOD Oscar1LBoxScore
97 - 2019-04-29875HOLLYWOOD Oscar0BELLEVILLE Senators5LBoxScore
98 - 2019-04-30886VICTORIAVILLE Tigres7HOLLYWOOD Oscar1LBoxScore
99 - 2019-05-01899HOLLYWOOD Oscar1VICTORIAVILLE Tigres5LBoxScore
101 - 2019-05-03911HOLLYWOOD Oscar0ROCKFORD IceHogs6LBoxScore
103 - 2019-05-05923VICTORIAVILLE Tigres2HOLLYWOOD Oscar0LBoxScore
104 - 2019-05-06938TORONTO Marlies4HOLLYWOOD Oscar1LBoxScore
106 - 2019-05-08952HOLLYWOOD Oscar0TORONTO Marlies7LBoxScore
107 - 2019-05-09965SYRACUSE Crunch1HOLLYWOOD Oscar7WBoxScore
108 - 2019-05-10977HOLLYWOOD Oscar0VICTORIAVILLE Tigres6LBoxScore
110 - 2019-05-12990TORONTO Marlies3HOLLYWOOD Oscar2LBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
112 - 2019-05-141011HOLLYWOOD Oscar1BRIDGEPORT Sound Tigers3LR3BoxScore
113 - 2019-05-151016HOLLYWOOD Oscar0UTICA Comets6LBoxScore
115 - 2019-05-171028UTICA Comets-HOLLYWOOD Oscar-
116 - 2019-05-181036HOLLYWOOD Oscar-SYRACUSE Crunch-
117 - 2019-05-191045LAVAL Rockets-HOLLYWOOD Oscar-
118 - 2019-05-201062HOLLYWOOD Oscar-SYRACUSE Crunch-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
2 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,382,250$ 1,125,000$ 1,125,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,068,750$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 6 12,125$ 72,750$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
28785022021304211982233923110113021610611039271101000205921131004217531174024219119786368611261219132827195153246112941201714.17%1821591.76%81552223869.35%782157449.68%795127062.60%246419661420393817459
3082452302615336164172412590230218174107412014003131559065903365709060141659771430399791012102840193454241014301702514.71%1702982.94%41222226254.02%919210243.72%655122353.56%240118661649472912490
318297002001124374-250413360100155202-147416340100069172-10318124202326025537302124638644141655263149812691215331.96%541277.78%0169105815.97%441439610.03%149114513.01%8485583302524780280
32787670201192412-320394320101157197-140393350100035215-180219215724901372725413344464434284255821601999389222.17%38684.21%0405125332.32%652440914.79%202111118.18%7965323203462696249
Total Regular Season320111182087579731148-175160558805444509579-70160569403313464569-1052299731682265504147628020416930529373115320011414730417310964574535478.79%4446286.04%123348681149.16%27941248122.39%1801474937.92%651049249576185232071479
Playoff
2851400000814-62110000067-13030000027-528132100313113439405321143024907114.29%9188.89%07915351.63%6814746.26%437954.43%12287112366631
3040400000616-102020000049-52020000027-506111700222086272426915735126116212.50%6266.67%02810227.45%3615223.68%156124.59%8961135345424
Total Playoff918000001430-16413000001016-650500000414-10214243800535122066647911271653615123313.04%15380.00%010725541.96%10429934.78%5814041.43%2121492487112056