HOLLYWOOD Oscar

GP: 40 | W: 5 | L: 34 | OTL: 1 | P: 11
GF: 54 | GA: 228 | PP%: 0.00% | PK%: 75.00%
GM : Dom Mailloux | Morale : 88 | Team Overall : 63
Next Games #528 vs MANITOBA Moose
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Kyle Clifford0X100.008644727179766764306365597171666599690
2Jordan Nolan0XX100.007646677083748663306262576864594099680
3Michael Mersch0X100.006941756081728262506262606251515899650
4Ty Rattie0X100.006042776470758465536265606652517486650
5Emile Poirier0X100.006043716074598258506054605450508099610
6Anthony Richard0X100.005444686041659258505660606050504499600
7Robin Kovacs (R)0X100.004635797665464953305047525354509599540
8Chad Ruhwedel0X100.007341856666776167305661696854523686640
9Rinat Valiev0X100.006743735184526458305049625750506699580
Scratches
TEAM AVERAGE100.00664274647166746139585860625553629663
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Laurent Brossoit100.00747880847677767575727252634799670
2Jhonas Enroth100.00665969577368697274697470663168620
Scratches
TEAM AVERAGE100.0070697571757373747571736165398465
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Pascal Vincent68686868727276CAN472330,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Chad RuhwedelHOLLYWOOD Oscar (SEA)D40131629-4522020649105296112.38%24089522.380001600000110.00%000010.6511000221
2Ty RattieHOLLYWOOD Oscar (SEA)RW402352838073431494310715.44%7944711.2000000000001084.00%2500011.2501000120
Team Total or Average80362157-42300279922547216814.17%319134316.7900016000002184.00%2500020.8512000341
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jhonas EnrothHOLLYWOOD Oscar (SEA)4053410.9245.35230019120526800000.88918400831
Team Total or Average4053410.9245.35230019120526800000.88918400831


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Anthony RichardHOLLYWOOD Oscar (SEA)C2112/20/1996No74 Kg155 CMNoNoNo1RFAPro & Farm750,000$0$0$NoLink
Chad RuhwedelHOLLYWOOD Oscar (SEA)D285/7/1990No87 Kg180 CMNoNoNo1UFAPro & Farm750,000$0$0$NoLink
Emile PoirierHOLLYWOOD Oscar (SEA)LW2312/14/1994No89 Kg188 CMNoNoNo1RFAPro & Farm750,000$0$0$NoLink
Jhonas EnrothHOLLYWOOD Oscar (SEA)G306/25/1988No80 Kg178 CMNoNoNo1UFAPro & Farm2,000,000$0$0$No
Jordan NolanHOLLYWOOD Oscar (SEA)C/RW296/23/1989No100 Kg191 CMNoNoNo1UFAPro & Farm900,000$0$0$NoLink
Kyle CliffordHOLLYWOOD Oscar (SEA)LW271/13/1991No96 Kg188 CMNoNoNo1RFAPro & Farm1,600,000$0$0$NoLink
Laurent BrossoitHOLLYWOOD Oscar (SEA)G253/23/1993No93 Kg191 CMNoNoNo3RFAPro & Farm1,500,000$0$0$NoLink
Michael MerschHOLLYWOOD Oscar (SEA)LW2510/2/1992No97 Kg188 CMNoNoNo5RFAPro & Farm750,000$0$0$NoLink
Rinat ValievHOLLYWOOD Oscar (SEA)D235/11/1995No98 Kg191 CMNoNoNo1RFAPro & Farm750,000$0$0$NoLink
Robin KovacsHOLLYWOOD Oscar (SEA)LW2111/16/1996Yes80 Kg183 CMNoNoNo1RFAPro & Farm750,000$0$0$No
Ty RattieHOLLYWOOD Oscar (SEA)RW252/5/1993No84 Kg180 CMNoNoNo1RFAPro & Farm750,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1125.1889 Kg183 CM1.551,022,727$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
131122
226122
323122
4Ty Rattie20122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
131122
2Chad Ruhwedel26122
323122
4Chad Ruhwedel20122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
155122
245122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
155122
2Chad Ruhwedel45122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
155122
245122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
155122
2Chad Ruhwedel45122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
15512255122
245122Chad Ruhwedel45122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
155122
245122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
155122
2Chad Ruhwedel45122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
, , ,
Extra Defensemen
Normal PowerPlayPenalty Kill
Chad Ruhwedel, , Chad RuhwedelChad Ruhwedel,
Penalty Shots
, , , ,
Goalie
#1 : Jhonas Enroth, #2 :
Custom OT Lines Forwards
, , , , , , , , , Ty Rattie,
Custom OT Lines Defensemen
, , Chad Ruhwedel, ,


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1BRIDGEPORT Sound Tigers1010000028-61010000028-60000000000000.00023500171718314211232219317112211200.00%10100.00%022566633.78%336216815.50%11258119.28%4172801637233357129
2BROOKLYN Wolfpack11000000725110000007250000000000021.000711180017171836321123221931244028000.00%000.00%022566633.78%336216815.50%11258119.28%4172801637233357129
3CLEVELAND Monsters20200000214-121010000017-61010000017-600.000235001717183132112322193117356421100.00%2150.00%022566633.78%336216815.50%11258119.28%4172801637233357129
4COLORADO Eagles30300000113-121010000003-320200000110-900.000123001717183152112322193121483021500.00%000.00%022566633.78%336216815.50%11258119.28%4172801637233357129
5CORNWALL Aces211000001011-1110000008441010000027-520.500101727001717183672112322193111634442100.00%20100.00%022566633.78%336216815.50%11258119.28%4172801637233357129
6IOWA Wild40400000427-2320200000313-1020200000114-1300.00048120017171832721123221931366113433000.00%20100.00%022566633.78%336216815.50%11258119.28%4172801637233357129
7LAVAL Rockets20200000014-140000000000020200000014-1400.000000001717183142112322193116251217200.00%10100.00%022566633.78%336216815.50%11258119.28%4172801637233357129
8LEHIGH VALLEY Phantoms30300000224-2220200000114-1310100000110-900.000246001717183132112322193125081418800.00%220.00%022566633.78%336216815.50%11258119.28%4172801637233357129
9MANITOBA Moose41101001121023100100112661010000004-450.62512213301171718326021123221931137380118100.00%000.00%022566633.78%336216815.50%11258119.28%4172801637233357129
10MILWAUKEE Admirals1010000007-7000000000001010000007-700.000000001717183821123221931551908000.00%000.00%022566633.78%336216815.50%11258119.28%4172801637233357129
11MONT-LAURIER Sommet40400000319-1620200000111-102020000028-600.000369001717183392112322193128887636300.00%30100.00%022566633.78%336216815.50%11258119.28%4172801637233357129
12PROVIDENCE Bruins20200000212-101010000006-61010000026-400.000224001717183172112322193116152014300.00%000.00%022566633.78%336216815.50%11258119.28%4172801637233357129
13SAN DIEGO Gulls1010000001-1000000000001010000001-100.0000000017171837211232219316618216100.00%10100.00%022566633.78%336216815.50%11258119.28%4172801637233357129
14STOCKTON Flames50500000435-3130300000326-232020000019-800.00047110017171833321123221931398100838300.00%20100.00%022566633.78%336216815.50%11258119.28%4172801637233357129
15TUSCON Roadrunners10100000010-1010100000010-100000000000000.0000000017171831021123221931982827000.00%10100.00%022566633.78%336216815.50%11258119.28%4172801637233357129
Total403340200154228-174213160100139121-82190180100015107-92110.1385492146011717183675211232219312860863534983600.00%20575.00%022566633.78%336216815.50%11258119.28%4172801637233357129
17VICTORIAVILLE Tigres20200000115-141010000018-71010000007-700.0001120017171831221123221931201621523300.00%3233.33%022566633.78%336216815.50%11258119.28%4172801637233357129
18WILKIES-BARRIE Penguins2010100046-21010000003-31000100043120.500471100171718363211232219318025047300.00%000.00%022566633.78%336216815.50%11258119.28%4172801637233357129
_Since Last GM Reset403340200154228-174213160100139121-82190180100015107-92110.1385492146011717183675211232219312860863534983600.00%20575.00%022566633.78%336216815.50%11258119.28%4172801637233357129
_Vs Conference252210100136151-11515211010012992-631001000000759-5270.1403664100011717183461211232219311854543433151900.00%15473.33%022566633.78%336216815.50%11258119.28%4172801637233357129
_Vs Division6119010011237-25211001001810-240900000427-2350.4171219310017171839821123221931439137673600.00%30100.00%022566633.78%336216815.50%11258119.28%4172801637233357129

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4011W1549214667528608635349801
All Games
GPWLOTWOTL SOWSOLGFGA
40334200154228
Home Games
GPWLOTWOTL SOWSOLGFGA
21316100139121
Visitor Games
GPWLOTWOTL SOWSOLGFGA
19018100015107
Last 10 Games
WLOTWOTL SOWSOL
280000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
3600.00%20575.00%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
211232219311717183
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
22566633.78%336216815.50%11258119.28%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
4172801637233357129


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2019-01-237HOLLYWOOD Oscar1IOWA Wild8LBoxScore
2 - 2019-01-2417VICTORIAVILLE Tigres8HOLLYWOOD Oscar1LBoxScore
4 - 2019-01-2630HOLLYWOOD Oscar0MANITOBA Moose4LBoxScore
5 - 2019-01-2745IOWA Wild5HOLLYWOOD Oscar0LBoxScore
7 - 2019-01-2958HOLLYWOOD Oscar0MONT-LAURIER Sommet3LBoxScore
8 - 2019-01-3067MONT-LAURIER Sommet2HOLLYWOOD Oscar1LBoxScore
10 - 2019-02-0183LEHIGH VALLEY Phantoms4HOLLYWOOD Oscar0LBoxScore
13 - 2019-02-04104HOLLYWOOD Oscar0VICTORIAVILLE Tigres7LBoxScore
14 - 2019-02-05113MANITOBA Moose3HOLLYWOOD Oscar4WXBoxScore
15 - 2019-02-06127HOLLYWOOD Oscar2MONT-LAURIER Sommet5LBoxScore
16 - 2019-02-07139STOCKTON Flames7HOLLYWOOD Oscar2LBoxScore
17 - 2019-02-08151HOLLYWOOD Oscar1STOCKTON Flames6LBoxScore
19 - 2019-02-10164HOLLYWOOD Oscar0LAVAL Rockets6LBoxScore
21 - 2019-02-12177MANITOBA Moose3HOLLYWOOD Oscar2LXXBoxScore
22 - 2019-02-13192CLEVELAND Monsters7HOLLYWOOD Oscar1LBoxScore
23 - 2019-02-14202HOLLYWOOD Oscar1LEHIGH VALLEY Phantoms10LBoxScore
25 - 2019-02-16218LEHIGH VALLEY Phantoms10HOLLYWOOD Oscar1LBoxScore
26 - 2019-02-17231PROVIDENCE Bruins6HOLLYWOOD Oscar0LBoxScore
28 - 2019-02-19242HOLLYWOOD Oscar0STOCKTON Flames3LBoxScore
30 - 2019-02-21262IOWA Wild8HOLLYWOOD Oscar3LBoxScore
32 - 2019-02-23274HOLLYWOOD Oscar0IOWA Wild6LBoxScore
33 - 2019-02-24288MONT-LAURIER Sommet9HOLLYWOOD Oscar0LBoxScore
34 - 2019-02-25294HOLLYWOOD Oscar0COLORADO Eagles7LBoxScore
35 - 2019-02-26309HOLLYWOOD Oscar4WILKIES-BARRIE Penguins3WXBoxScore
37 - 2019-02-28322CORNWALL Aces4HOLLYWOOD Oscar8WBoxScore
38 - 2019-03-01337WILKIES-BARRIE Penguins3HOLLYWOOD Oscar0LBoxScore
40 - 2019-03-03350HOLLYWOOD Oscar2PROVIDENCE Bruins6LBoxScore
41 - 2019-03-04364HOLLYWOOD Oscar2CORNWALL Aces7LBoxScore
43 - 2019-03-06374HOLLYWOOD Oscar0LAVAL Rockets8LBoxScore
44 - 2019-03-07385TUSCON Roadrunners10HOLLYWOOD Oscar0LBoxScore
46 - 2019-03-09403STOCKTON Flames8HOLLYWOOD Oscar1LBoxScore
48 - 2019-03-11417MANITOBA Moose0HOLLYWOOD Oscar6WBoxScore
49 - 2019-03-12425HOLLYWOOD Oscar1COLORADO Eagles3LBoxScore
50 - 2019-03-13439HOLLYWOOD Oscar0SAN DIEGO Gulls1LR3BoxScore
51 - 2019-03-14455STOCKTON Flames11HOLLYWOOD Oscar0LBoxScore
53 - 2019-03-16467HOLLYWOOD Oscar0MILWAUKEE Admirals7LBoxScore
54 - 2019-03-17479COLORADO Eagles3HOLLYWOOD Oscar0LBoxScore
56 - 2019-03-19495BRIDGEPORT Sound Tigers8HOLLYWOOD Oscar2LR3BoxScore
57 - 2019-03-20504HOLLYWOOD Oscar1CLEVELAND Monsters7LBoxScore
58 - 2019-03-21521BROOKLYN Wolfpack2HOLLYWOOD Oscar7WBoxScore
60 - 2019-03-23528HOLLYWOOD Oscar-MANITOBA Moose-
62 - 2019-03-25547HERSEY Bears-HOLLYWOOD Oscar-
63 - 2019-03-26556HOLLYWOOD Oscar-MANITOBA Moose-
64 - 2019-03-27573HOLLYWOOD Oscar-HERSEY Bears-
65 - 2019-03-28579HOLLYWOOD Oscar-BROOKLYN Wolfpack-
67 - 2019-03-30593PV Sharapovas-HOLLYWOOD Oscar-
68 - 2019-03-31608SAN DIEGO Gulls-HOLLYWOOD Oscar-
69 - 2019-04-01621HOLLYWOOD Oscar-TUSCON Roadrunners-
71 - 2019-04-03632HOLLYWOOD Oscar-CHICAGO Wolves-
72 - 2019-04-04644BELLEVILLE Senators-HOLLYWOOD Oscar-
74 - 2019-04-06660LAVAL Rockets-HOLLYWOOD Oscar-
75 - 2019-04-07673HOLLYWOOD Oscar-STOCKTON Flames-
77 - 2019-04-09688MONT-LAURIER Sommet-HOLLYWOOD Oscar-
78 - 2019-04-10703CHICAGO Wolves-HOLLYWOOD Oscar-
79 - 2019-04-11714HOLLYWOOD Oscar-SAN DIEGO Gulls-
81 - 2019-04-13731LEHIGH VALLEY Phantoms-HOLLYWOOD Oscar-
82 - 2019-04-14741HOLLYWOOD Oscar-LEHIGH VALLEY Phantoms-
83 - 2019-04-15753HOLLYWOOD Oscar-LEHIGH VALLEY Phantoms-
85 - 2019-04-17767ROCKFORD IceHogs-HOLLYWOOD Oscar-
86 - 2019-04-18779HOLLYWOOD Oscar-IOWA Wild-
87 - 2019-04-19790CLEVELAND Monsters-HOLLYWOOD Oscar-
88 - 2019-04-20796HOLLYWOOD Oscar-MONT-LAURIER Sommet-
91 - 2019-04-23818MANITOBA Moose-HOLLYWOOD Oscar-
93 - 2019-04-25833MILWAUKEE Admirals-HOLLYWOOD Oscar-
94 - 2019-04-26848HOLLYWOOD Oscar-PV Sharapovas-
95 - 2019-04-27859IOWA Wild-HOLLYWOOD Oscar-
97 - 2019-04-29875HOLLYWOOD Oscar-BELLEVILLE Senators-
98 - 2019-04-30886VICTORIAVILLE Tigres-HOLLYWOOD Oscar-
99 - 2019-05-01899HOLLYWOOD Oscar-VICTORIAVILLE Tigres-
101 - 2019-05-03911HOLLYWOOD Oscar-ROCKFORD IceHogs-
103 - 2019-05-05923VICTORIAVILLE Tigres-HOLLYWOOD Oscar-
104 - 2019-05-06938TORONTO Marlies-HOLLYWOOD Oscar-
106 - 2019-05-08952HOLLYWOOD Oscar-TORONTO Marlies-
107 - 2019-05-09965SYRACUSE Crunch-HOLLYWOOD Oscar-
108 - 2019-05-10977HOLLYWOOD Oscar-VICTORIAVILLE Tigres-
110 - 2019-05-12990TORONTO Marlies-HOLLYWOOD Oscar-
Trade Deadline --- Trades can’t be done after this day is simulated!
112 - 2019-05-141011HOLLYWOOD Oscar-BRIDGEPORT Sound Tigers-
113 - 2019-05-151016HOLLYWOOD Oscar-UTICA Comets-
115 - 2019-05-171028UTICA Comets-HOLLYWOOD Oscar-
116 - 2019-05-181036HOLLYWOOD Oscar-SYRACUSE Crunch-
117 - 2019-05-191045LAVAL Rockets-HOLLYWOOD Oscar-
118 - 2019-05-201062HOLLYWOOD Oscar-SYRACUSE Crunch-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
20 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
703,250$ 1,125,000$ 1,125,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 543,750$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 62 12,125$ 751,750$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
28785022021304211982233923110113021610611039271101000205921131004217531174024219119786368611261219132827195153246112941201714.17%1821591.76%81552223869.35%782157449.68%795127062.60%246419661420393817459
3082452302615336164172412590230218174107412014003131559065903365709060141659771430399791012102840193454241014301702514.71%1702982.94%41222226254.02%919210243.72%655122353.56%240118661649472912490
318297002001124374-250413360100155202-147416340100069172-10318124202326025537302124638644141655263149812691215331.96%541277.78%0169105815.97%441439610.03%149114513.01%8485583302524780280
32403340200154228-174213160100139121-82190180100015107-92115492146011717183675211232219312860863534983600.00%20575.00%022566633.78%336216815.50%11258119.28%4172801637233357129
Total Regular Season28210714908747935964-29142547205434491503-12140537703313444461-172199351617255204145627019715864627022904299110312008343510504134479459.39%4266185.68%123168622450.90%24781024024.20%1711421940.55%613146728010162328671359
Playoff
2851400000814-62110000067-13030000027-528132100313113439405321143024907114.29%9188.89%07915351.63%6814746.26%437954.43%12287112366631
3040400000616-102020000049-52020000027-506111700222086272426915735126116212.50%6266.67%02810227.45%3615223.68%156124.59%8961135345424
Total Playoff918000001430-16413000001016-650500000414-10214243800535122066647911271653615123313.04%15380.00%010725541.96%10429934.78%5814041.43%2121492487112056