TUSCON Roadrunners

GP: 6 | W: 4 | L: 1 | OTL: 1 | P: 9
GF: 52 | GA: 11 | PP%: 20.00% | PK%: 76.92%
DG: | Morale : 99 | Moyenne d'Équipe : 59
Prochain matchs #84 vs UTICA Comets
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Tage Thompson0XX100.006735736493758663666263596354518091670
2Saku Maenalanen (R)0X100.006635706688636765546161586251505697640
3Alan Quine95XX100.005435707075565669686768536954514797620
4Ryan Kuffner0X100.005535775976765559506060606050504497610
5Adam Helewka34X100.005389687077505070506464506450504397600
6Filip Chlapik0X100.005235676877535268696363526351507396600
7German Rubtsov (R)0X100.005089736776505067706262526250504496590
8Adam Brooks (R)0X100.005089667056505070706464506450504497580
9Glenn Gawdin (R)0X100.005189607076505070705757515750504497580
10Sheldon Rempal0X100.005035676963535369506161516250504397580
11Graham Knott75X100.005489676082485060705353505350504499560
12Mitch Hults10X100.005789726382505063705252505250504297560
13Nolan Stevens (R)0X100.005289706380505063505146515650504499550
14Slater Koekkoek15X100.007235786379746562306058716554518397650
15Jacob Larsson (R)0X100.006235766180708461305650656152518097630
16Haydn Fleury0X100.006135706285596062315147585853518694590
17Josh Teves (R)0X100.009835775068745050305355655850504397590
18Nicolas Hague (R)0X100.006689646795505067305247595750504497590
Rayé
1Daniel Zaar46X100.004735777266474368306460505558517993580
2Deven Sideroff (R)0X100.005089726067505060505050505050504493540
3Andreas Borgman0X100.005489636577505065304944505452514394550
4Jalen Chatfield (R)0X100.005089705775465057304540505050504493520
MOYENNE D'ÉQUIPE100.00586270647757566450575655595150549659
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Adin Hill100.00797880937877797877787351656597690
2Sam Brittain100.00455062776052505150525562516397500
Rayé
MOYENNE D'ÉQUIPE100.0062647185696565656465645758649760
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Bruce Boudreau79858480939344CAN6511,000,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Ryan KuffnerTUSCON Roadrunners (ARZ)LW68132119205445163117.78%211519.17101511000180066.67%300013.6501000211
2Slater KoekkoekTUSCON Roadrunners (ARZ)D661420174014434191517.65%514323.9412391500009000.00%000002.7800000111
3Filip ChlapikTUSCON Roadrunners (ARZ)C61061619207750112120.00%010417.50011511000003072.92%9600023.0500000110
4Alan QuineTUSCON Roadrunners (ARZ)C/LW65914130032514359.80%39816.47022412000080173.68%1900002.8301000001
5Tage ThompsonTUSCON Roadrunners (ARZ)C/RW5581312405133862213.16%111924.001122120002100071.21%13200002.1701000011
6Jacob LarssonTUSCON Roadrunners (ARZ)D618913204313777.69%010717.910003900017100.00%000001.6800000000
7Adam HelewkaTUSCON Roadrunners (ARZ)LW66397408335103217.14%08814.7500000000000033.33%600012.0300000000
8Josh TevesTUSCON Roadrunners (ARZ)D6178126011217895.88%510116.870000000000000.00%000001.5800000000
9Nicolas HagueTUSCON Roadrunners (ARZ)D608813009282100.00%110818.040004900008000.00%000001.4800000000
10Saku MaenalanenTUSCON Roadrunners (ARZ)RW63581300123347238.82%110317.200004120000100042.86%700001.5501000000
11German RubtsovTUSCON Roadrunners (ARZ)C625772021267167.69%18614.4400000000000067.68%9900001.6200000001
12Sheldon RempalTUSCON Roadrunners (ARZ)RW6167700282510204.00%08614.450000000000000.00%000001.6200000000
13Adam BrooksTUSCON Roadrunners (ARZ)C64153005228162214.29%0549.0500000000000076.09%4600001.8400000001
14Haydn FleuryTUSCON Roadrunners (ARZ)D3033220325120.00%14113.960001300001000.00%000001.4300000000
15Glenn GawdinTUSCON Roadrunners (ARZ)C6000000001000.00%061.0800010000000020.00%500000.0000000000
Stats d'équipe Total ou en Moyenne865296148157280905641012426512.68%20136715.90369381000004664169.73%41300042.1704000446
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Adin HillTUSCON Roadrunners (ARZ)64110.9081.6436501101090000.750460100
Stats d'équipe Total ou en Moyenne64110.9081.6436501101090000.750460100


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Salaire RestantSalaire MoyenSalaire Moyen RestantCap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Adam BrooksTUSCON Roadrunners (ARZ)C231996-05-06Yes80 Kg155 CMNoNoNo2Pro & Farm750,000$695,945$750,000$695,945$0$0$No750,000$Lien
Adam HelewkaTUSCON Roadrunners (ARZ)LW241995-07-21No91 Kg185 CMNoNoNo1Pro & Farm750,000$695,945$750,000$695,945$0$0$NoLien
Adin HillTUSCON Roadrunners (ARZ)G231996-05-11No92 Kg198 CMNoNoNo1Pro & Farm750,000$695,945$750,000$695,945$0$0$NoLien
Alan QuineTUSCON Roadrunners (ARZ)C/LW261993-02-25No92 Kg183 CMNoNoNo1Pro & Farm750,000$695,945$750,000$695,945$0$0$NoLien
Andreas BorgmanTUSCON Roadrunners (ARZ)D241995-06-18No96 Kg183 CMNoNoNo4Pro & Farm750,000$695,945$750,000$695,945$0$0$No750,000$750,000$750,000$Lien
Daniel ZaarTUSCON Roadrunners (ARZ)RW251994-04-24No81 Kg183 CMNoNoNo0Pro & Farm0$0$No
Deven SideroffTUSCON Roadrunners (ARZ)RW221997-04-14Yes78 Kg180 CMNoNoNo2Pro & Farm750,000$695,945$750,000$695,945$0$0$No750,000$Lien
Filip ChlapikTUSCON Roadrunners (ARZ)C221997-06-03No89 Kg185 CMNoNoNo1Pro & Farm750,000$695,945$750,000$695,945$0$0$NoLien
German RubtsovTUSCON Roadrunners (ARZ)C211998-06-27Yes81 Kg188 CMNoNoNo2Pro & Farm750,000$695,945$750,000$695,945$0$0$No750,000$Lien
Glenn GawdinTUSCON Roadrunners (ARZ)C221997-03-25Yes87 Kg185 CMNoNoNo2Pro & Farm750,000$695,945$750,000$695,945$0$0$No750,000$Lien
Graham KnottTUSCON Roadrunners (ARZ)C221997-01-13No87 Kg191 CMNoNoNo2Pro & Farm750,000$695,945$750,000$695,945$0$0$No750,000$Lien
Haydn FleuryTUSCON Roadrunners (ARZ)D231996-07-08No95 Kg191 CMNoNoNo1Pro & Farm750,000$695,945$750,000$695,945$0$0$NoLien
Jacob LarssonTUSCON Roadrunners (ARZ)D221997-04-29Yes90 Kg188 CMNoNoNo2Pro & Farm750,000$695,945$750,000$695,945$0$0$No750,000$Lien
Jalen ChatfieldTUSCON Roadrunners (ARZ)D231996-05-16Yes85 Kg185 CMNoNoNo2Pro & Farm750,000$695,945$750,000$695,945$0$0$No750,000$Lien
Josh TevesTUSCON Roadrunners (ARZ)D241995-02-18Yes77 Kg183 CMNoNoNo2Pro & Farm750,000$695,945$750,000$695,945$0$0$No750,000$Lien
Mitch HultsTUSCON Roadrunners (ARZ)C231995-11-13No95 Kg188 CMNoNoNo1Pro & Farm750,000$695,945$750,000$695,945$0$0$NoLien
Nicolas HagueTUSCON Roadrunners (ARZ)D201998-12-05Yes98 Kg198 CMNoNoNo2Pro & Farm750,000$695,945$750,000$695,945$0$0$No750,000$Lien
Nolan StevensTUSCON Roadrunners (ARZ)C231996-07-22Yes83 Kg191 CMNoNoNo2Pro & Farm750,000$695,945$750,000$695,945$0$0$No750,000$Lien
Ryan KuffnerTUSCON Roadrunners (ARZ)LW231996-06-12No89 Kg185 CMNoNoNo2Pro & Farm750,000$695,945$750,000$695,945$0$0$No750,000$Lien
Saku MaenalanenTUSCON Roadrunners (ARZ)RW251994-05-29Yes94 Kg193 CMNoNoNo2Pro & Farm750,000$695,945$750,000$695,945$0$0$No750,000$Lien
Sam BrittainTUSCON Roadrunners (ARZ)G271992-05-10No100 Kg191 CMNoNoNo1Pro & Farm750,000$695,945$750,000$695,945$0$0$No
Sheldon RempalTUSCON Roadrunners (ARZ)RW241995-08-07No75 Kg178 CMNoNoNo2Pro & Farm750,000$695,945$750,000$695,945$0$0$No750,000$Lien
Slater KoekkoekTUSCON Roadrunners (ARZ)D251994-02-18No88 Kg188 CMNoNoNo1Pro & Farm925,000$858,333$925,000$858,333$0$0$NoLien
Tage ThompsonTUSCON Roadrunners (ARZ)C/RW211997-10-30No93 Kg198 CMNoNoNo1Pro & Farm750,000$695,945$750,000$695,945$0$0$NoLien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2423.2188 Kg185 CM1.63726,042$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Alan QuineTage ThompsonSaku Maenalanen31122
2Ryan KuffnerFilip Chlapik26122
3Adam HelewkaGerman RubtsovSheldon Rempal23122
4Adam BrooksTage Thompson20122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Slater Koekkoek31122
2Jacob LarssonNicolas Hague26122
3Josh Teves23122
4Slater Koekkoek20122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Alan QuineTage ThompsonSaku Maenalanen55122
2Ryan KuffnerFilip Chlapik45122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Slater Koekkoek55122
2Jacob LarssonNicolas Hague45122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Tage ThompsonSaku Maenalanen55122
2Alan QuineRyan Kuffner45122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Slater Koekkoek55122
2Jacob LarssonNicolas Hague45122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Tage Thompson55122Slater Koekkoek55122
2Saku Maenalanen45122Jacob LarssonNicolas Hague45122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Tage ThompsonSaku Maenalanen55122
2Alan QuineRyan Kuffner45122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Slater Koekkoek55122
2Jacob LarssonNicolas Hague45122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Alan QuineTage ThompsonSaku MaenalanenSlater Koekkoek
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Alan QuineTage ThompsonSaku MaenalanenSlater Koekkoek
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Glenn Gawdin, Adam Helewka, Glenn Gawdin, Adam Helewka
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Josh Teves, , Jacob LarssonJosh Teves, Jacob Larsson
Tirs de Pénalité
Tage Thompson, Saku Maenalanen, Alan Quine, Ryan Kuffner, Adam Helewka
Gardien
#1 : Adin Hill, #2 : Sam Brittain
Lignes d'Attaque Perso. en Prol.
Tage Thompson, Saku Maenalanen, Alan Quine, Ryan Kuffner, Adam Helewka, Filip Chlapik, Filip Chlapik, , German Rubtsov, Adam Brooks,
Lignes de Défense Perso. en Prol.
, Slater Koekkoek, Jacob Larsson, Nicolas Hague, Josh Teves


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1CHICAGO Wolves220000002312222000000231220000000000041.000234063012615110196127147137773427000.00%20100.00%013218471.74%8013260.61%8611475.44%21518190275833
2IOWA Wild1010000024-21010000024-20000000000000.0002460026151103512714713773334173133.33%110.00%013218471.74%8013260.61%8611475.44%21518190275833
3Marlies de Toronto110000001311200000000000110000001311221.00013263900261511098127147137783626000.00%3166.67%013218471.74%8013260.61%8611475.44%21518190275833
4ROCKFORD IceHogs110000001221000000000000110000001221021.000122335002615110581271471377194258225.00%110.00%013218471.74%8013260.61%8611475.44%21518190275833
Total641000015211414210000127819220000002532290.7505296148012615110414127147137710919288715320.00%13376.92%013218471.74%8013260.61%8611475.44%21518190275833
6UTICA Comets1000000123-11000000123-10000000000010.5002350026151102712714713774261212400.00%60100.00%013218471.74%8013260.61%8611475.44%21518190275833
_Since Last GM Reset641000015211414210000127819220000002532290.7505296148012615110414127147137710919288715320.00%13376.92%013218471.74%8013260.61%8611475.44%21518190275833
_Vs Conference54000001507433200000125421220000002532290.900509214201261511037912714713777616247012216.67%12283.33%013218471.74%8013260.61%8611475.44%21518190275833
_Vs Division1100000123-11000000123-10100000000031.5002350026151102712714713774261212400.00%60100.00%013218471.74%8013260.61%8611475.44%21518190275833

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
69W2529614841410919288701
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
64100015211
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
4210001278
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
2200000253
Derniers 10 Matchs
WLOTWOTL SOWSOL
410001
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
15320.00%13376.92%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
12714713772615110
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
13218471.74%8013260.61%8611475.44%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
21518190275833


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
1 - 2020-01-156CHICAGO Wolves1TUSCON Roadrunners11WSommaire du Match
2 - 2020-01-1625IOWA Wild4TUSCON Roadrunners2LSommaire du Match
3 - 2020-01-1736TUSCON Roadrunners12ROCKFORD IceHogs2WSommaire du Match
4 - 2020-01-1849UTICA Comets3TUSCON Roadrunners2LXXSommaire du Match
5 - 2020-01-1963TUSCON Roadrunners13Marlies de Toronto1WSommaire du Match
7 - 2020-01-2176CHICAGO Wolves0TUSCON Roadrunners12WSommaire du Match
9 - 2020-01-2384TUSCON Roadrunners-UTICA Comets-
11 - 2020-01-25100TUSCON Roadrunners-LEHIGH VALLEY Phantoms-
13 - 2020-01-27105TUSCON Roadrunners-SAN DIEGO Gulls-
15 - 2020-01-29124Marlies de Toronto-TUSCON Roadrunners-
17 - 2020-01-31139BROOKLYN Wolfpack-TUSCON Roadrunners-
20 - 2020-02-03154TUSCON Roadrunners-BROOKLYN Wolfpack-
21 - 2020-02-04164TUSCON Roadrunners-PROVIDENCE Bruins-
22 - 2020-02-05175ROCKFORD IceHogs-TUSCON Roadrunners-
23 - 2020-02-06183TUSCON Roadrunners-CHICAGO Wolves-
24 - 2020-02-07196BRIDGEPORT Sound Tigers-TUSCON Roadrunners-
26 - 2020-02-09214TUSCON Roadrunners-UTICA Comets-
27 - 2020-02-10224Syracruse Crunch-TUSCON Roadrunners-
28 - 2020-02-11240TUSCON Roadrunners-WILKIES-BARRIE Penguins-
29 - 2020-02-12249Manitoba Moose-TUSCON Roadrunners-
30 - 2020-02-13258TUSCON Roadrunners-Binghampton Devils-
32 - 2020-02-15279Manitoba Moose-TUSCON Roadrunners-
33 - 2020-02-16289TUSCON Roadrunners-VICTORIAVILLE Tigres-
34 - 2020-02-17297TUSCON Roadrunners-MONT-LAURIER Sommet-
35 - 2020-02-18309CHICAGO Wolves-TUSCON Roadrunners-
37 - 2020-02-20323TUSCON Roadrunners-CHICAGO Wolves-
38 - 2020-02-21335CORNWALL Aces-TUSCON Roadrunners-
39 - 2020-02-22354TUSCON Roadrunners-LAVAL Rockets-
40 - 2020-02-23361MILWAUKEE Admirals-TUSCON Roadrunners-
42 - 2020-02-25381TUSCON Roadrunners-COLORADO Eagles-
43 - 2020-02-26385CORNWALL Aces-TUSCON Roadrunners-
44 - 2020-02-27405MILWAUKEE Admirals-TUSCON Roadrunners-
45 - 2020-02-28409TUSCON Roadrunners-CORNWALL Aces-
46 - 2020-02-29428MONT-LAURIER Sommet-TUSCON Roadrunners-
48 - 2020-03-02446TUSCON Roadrunners-BROOKLYN Wolfpack-
49 - 2020-03-03457CHICAGO Wolves-TUSCON Roadrunners-
50 - 2020-03-04468TUSCON Roadrunners-STOCKTON Flames-
52 - 2020-03-06475TUSCON Roadrunners-PV Sharapovas-
53 - 2020-03-07488TUSCON Roadrunners-LAVAL Rockets-
54 - 2020-03-08497Binghampton Devils-TUSCON Roadrunners-
56 - 2020-03-10513BROOKLYN Wolfpack-TUSCON Roadrunners-
58 - 2020-03-12534UTICA Comets-TUSCON Roadrunners-
59 - 2020-03-13546TUSCON Roadrunners-PV Sharapovas-
60 - 2020-03-14561LEHIGH VALLEY Phantoms-TUSCON Roadrunners-
61 - 2020-03-15571TUSCON Roadrunners-BRIDGEPORT Sound Tigers-
62 - 2020-03-16586BRIDGEPORT Sound Tigers-TUSCON Roadrunners-
63 - 2020-03-17597TUSCON Roadrunners-MILWAUKEE Admirals-
65 - 2020-03-19612LAVAL Rockets-TUSCON Roadrunners-
66 - 2020-03-20625TUSCON Roadrunners-IOWA Wild-
67 - 2020-03-21639HERSEY Bears-TUSCON Roadrunners-
68 - 2020-03-22650TUSCON Roadrunners-ROCKFORD IceHogs-
69 - 2020-03-23664TUSCON Roadrunners-Syracruse Crunch-
70 - 2020-03-24674VICTORIAVILLE Tigres-TUSCON Roadrunners-
72 - 2020-03-26691HERSEY Bears-TUSCON Roadrunners-
73 - 2020-03-27706TUSCON Roadrunners-HERSEY Bears-
74 - 2020-03-28715LAVAL Rockets-TUSCON Roadrunners-
76 - 2020-03-30730TUSCON Roadrunners-HERSEY Bears-
77 - 2020-03-31741PROVIDENCE Bruins-TUSCON Roadrunners-
78 - 2020-04-01757TUSCON Roadrunners-PROVIDENCE Bruins-
79 - 2020-04-02770PROVIDENCE Bruins-TUSCON Roadrunners-
80 - 2020-04-03783TUSCON Roadrunners-Marlies de Toronto-
81 - 2020-04-04790TUSCON Roadrunners-ROCKFORD IceHogs-
82 - 2020-04-05805STOCKTON Flames-TUSCON Roadrunners-
84 - 2020-04-07817TUSCON Roadrunners-BRIDGEPORT Sound Tigers-
85 - 2020-04-08826TUSCON Roadrunners-SAN DIEGO Gulls-
86 - 2020-04-09839BELLEVILLE Senators-TUSCON Roadrunners-
87 - 2020-04-10855HOLLYWOOD Oscar-TUSCON Roadrunners-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
89 - 2020-04-12871COLORADO Eagles-TUSCON Roadrunners-
90 - 2020-04-13879TUSCON Roadrunners-MILWAUKEE Admirals-
91 - 2020-04-14897COLORADO Eagles-TUSCON Roadrunners-
92 - 2020-04-15903TUSCON Roadrunners-Manitoba Moose-
93 - 2020-04-16917TUSCON Roadrunners-LEHIGH VALLEY Phantoms-
94 - 2020-04-17929TUSCON Roadrunners-HOLLYWOOD Oscar-
95 - 2020-04-18939ROCKFORD IceHogs-TUSCON Roadrunners-
97 - 2020-04-20958Marlies de Toronto-TUSCON Roadrunners-
98 - 2020-04-21968TUSCON Roadrunners-COLORADO Eagles-
99 - 2020-04-22984PV Sharapovas-TUSCON Roadrunners-
101 - 2020-04-241003WILKIES-BARRIE Penguins-TUSCON Roadrunners-
104 - 2020-04-271019TUSCON Roadrunners-BELLEVILLE Senators-
106 - 2020-04-291034SAN DIEGO Gulls-TUSCON Roadrunners-
107 - 2020-04-301043TUSCON Roadrunners-BELLEVILLE Senators-
110 - 2020-05-031064SAN DIEGO Gulls-TUSCON Roadrunners-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
37 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
195,631$ 1,742,500$ 1,742,500$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 123,559$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 103 24,707$ 2,544,821$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
33641000015211414210000127819220000002532295296148012615110414127147137710919288715320.00%13376.92%013218471.74%8013260.61%8611475.44%21518190275833
Total Saison Régulière641000015211414210000127819220000002532295296148012615110414127147137710919288715320.00%13376.92%013218471.74%8013260.61%8611475.44%21518190275833