MILWAUKEE Admirals

GP: 40 | W: 20 | L: 17 | OTL: 3 | P: 43
GF: 127 | GA: 96 | PP%: 22.40% | PK%: 81.42%
GM : Louis Bourgault | Morale : 96 | Team Overall : 62
Next Games #524 vs IOWA Wild
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Ryan Hartman0X100.007246667866819571507166656856537680710
2Pontus Aberg0XX100.006042817271787467306863616453527382670
3Beau Bennett0X100.006043736174668365307058605858547083650
4William Carrier0X100.008942756979725460606261626553576781650
5Brian Flynn0XXX100.005641766069648362506260606061563582630
6Carter Verhaeghe0X100.005543726072647564676561606150504482620
7Daniel Paille0X100.00563781677246575932545767557669782610
8Sergey Tolchinsky0X100.004842746054536060506257605750504482570
9Dalton Smith0X100.006249546078526251505151605150507382570
10Jordan Oesterle0X100.006941927466867271306065686953524282680
11Dylan DeMelo0X100.006943766572758077306557676255534782670
12Viktor Svedberg0X100.007847595099539055305046605351533782610
13Nikita Nikitin0X100.005336806083574449303333725072662382550
14Dylan Olsen0X100.005637796580454451303535695562586382540
15Jakub Kindl0X100.006239666377454648303330654872622382530
Scratches
TEAM AVERAGE100.00634274647462686140565364585856488262
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Aaron Dell100.00787882808080817979767554663680690
2Thatcher Demko100.00727082827379747373716950617681650
Scratches
1Samuel Montembeault (R)100.00676872816971706969666650594476610
2Sam Brittain100.00455062776052505150525562516363500
TEAM AVERAGE100.0066677580717169686866665459557561
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Davis Payne70707070757574CAN484650,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Pontus AbergMILWAUKEE Admirals (NSH)LW/RW402128491410041611836411311.48%17100525.1417818920001654048.11%10600000.9700000252
2William CarrierMILWAUKEE Admirals (NSH)LW401427411230013155159491018.81%586521.644111528910000300254.39%5700000.9500000422
3Carter VerhaegheMILWAUKEE Admirals (NSH)C4016223813401087112399414.29%1268317.0849132494000005163.45%73600011.1100000223
4Jordan OesterleMILWAUKEE Admirals (NSH)D40172037-23006650141387912.06%6394023.501061673113000197500.00%000000.7900000213
5Ryan HartmanMILWAUKEE Admirals (NSH)RW2313162992208559110419011.82%661526.7411211560002472054.81%38500010.9400000521
6Beau BennettMILWAUKEE Admirals (NSH)RW401215276115445112537719.60%480120.0312314520001491047.00%31700000.6700001114
7Brian FlynnMILWAUKEE Admirals (NSH)C/LW/RW4091827110034739738889.28%968817.211561697000091057.84%80400000.7800000034
8Dylan DeMeloMILWAUKEE Admirals (NSH)D4051924-118040446621487.58%3984621.15358289100027900100.00%100000.5700000011
9Daniel PailleMILWAUKEE Admirals (NSH)LW40912211010024299329649.68%854313.60112212000001048.48%3300000.7700000000
10Nikita NikitinMILWAUKEE Admirals (NSH)D4011415181202020358252.86%3264816.22123952000045000.00%000000.4600000011
11Jakub KindlMILWAUKEE Admirals (NSH)D4021012916044111251216.67%3754013.5200015000023020.00%000000.4400000100
12Dylan OlsenMILWAUKEE Admirals (NSH)D4011112022031201910125.26%4255813.9501118000017000.00%000000.4300000001
13Viktor SvedbergMILWAUKEE Admirals (NSH)D40210122242095202092010.00%4671917.98112781000058000.00%000000.3300000000
14Dalton SmithMILWAUKEE Admirals (NSH)LW403710710040193922247.69%645811.45000140000241059.46%3700000.4400000001
15Sergey TolchinskyMILWAUKEE Admirals (NSH)LW40246300312339196.06%22225.55022619000060059.26%5400000.5400000000
Team Total or Average5831272333601212475708611124441986010.21%3281013517.38285381239875000755620557.11%253000020.7100001171823
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Thatcher DemkoMILWAUKEE Admirals (NSH)34191320.9142.20202224748590100.0000340312
2Aaron DellMILWAUKEE Admirals (NSH)2018020.9431.10120308223880000.0000200312
3Louis DomingueNASHVILLE Predators1713400.9221.70102503293710001.0003170010
4Samuel MontembeaultMILWAUKEE Admirals (NSH)71410.8943.5037700222070000.0000626000
Team Total or Average78512150.9191.91462821514718250101.00037726634


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Aaron DellMILWAUKEE Admirals (NSH)G295/4/1989No91 Kg183 CMNoNoNo3UFAPro & Farm750,000$0$0$NoLink
Beau BennettMILWAUKEE Admirals (NSH)RW2611/27/1991No89 Kg188 CMNoNoNo1RFAPro & Farm900,000$0$0$NoLink
Brian FlynnMILWAUKEE Admirals (NSH)C/LW/RW307/26/1988No83 Kg185 CMNoNoNo1UFAPro & Farm1,750,000$0$0$NoLink
Carter VerhaegheMILWAUKEE Admirals (NSH)C238/14/1995No86 Kg188 CMNoNoNo1RFAPro & Farm750,000$0$0$NoLink
Dalton SmithMILWAUKEE Admirals (NSH)LW266/30/1992No94 Kg188 CMNoNoNo2RFAPro & Farm750,000$0$0$NoLink
Daniel PailleMILWAUKEE Admirals (NSH)LW344/15/1984No91 Kg185 CMNoNoNo1UFAPro & Farm1,250,000$0$0$No
Dylan DeMeloMILWAUKEE Admirals (NSH)D255/1/1993No89 Kg185 CMNoNoNo2RFAPro & Farm900,000$0$0$NoLink
Dylan OlsenMILWAUKEE Admirals (NSH)D271/3/1991No101 Kg188 CMNoNoNo1RFAPro & Farm750,000$0$0$No
Jakub KindlMILWAUKEE Admirals (NSH)D312/10/1987No90 Kg191 CMNoNoNo1UFAPro & Farm1,500,000$0$0$No
Jordan OesterleMILWAUKEE Admirals (NSH)D266/25/1992No83 Kg183 CMNoNoNo1RFAPro & Farm750,000$0$0$NoLink
Nikita NikitinMILWAUKEE Admirals (NSH)D326/16/1986No99 Kg193 CMNoNoNo1UFAPro & Farm1,500,000$0$0$No
Pontus AbergMILWAUKEE Admirals (NSH)LW/RW249/23/1993No89 Kg180 CMNoNoNo1RFAPro & Farm750,000$0$0$NoLink
Ryan HartmanMILWAUKEE Admirals (NSH)RW239/20/1994No82 Kg183 CMNoNoNo1RFAPro & Farm1,800,000$0$0$NoLink
Sam BrittainMILWAUKEE Admirals (NSH)G265/10/1992No100 Kg191 CMNoNoNo3RFAPro & Farm750,000$0$0$No
Samuel Montembeault (1 Way Contract)MILWAUKEE Admirals (NSH)G2110/30/1996Yes87 Kg191 CMNoNoNo2RFAPro & Farm725,000$725,000$385,887$NoLink
Sergey TolchinskyMILWAUKEE Admirals (NSH)LW232/3/1995No77 Kg173 CMNoNoNo4RFAPro & Farm750,000$0$0$NoLink
Thatcher DemkoMILWAUKEE Admirals (NSH)G2212/8/1995No87 Kg193 CMNoNoNo3RFAPro & Farm750,000$0$0$NoLink
Viktor SvedbergMILWAUKEE Admirals (NSH)D275/24/1991No108 Kg203 CMNoNoNo2RFAPro & Farm750,000$0$0$NoLink
William CarrierMILWAUKEE Admirals (NSH)LW2312/20/1994No96 Kg188 CMNoNoNo3RFAPro & Farm750,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1926.2191 Kg188 CM1.79977,632$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Pontus AbergBrian FlynnRyan Hartman31122
2William CarrierCarter VerhaegheBeau Bennett26122
3Daniel PailleRyan HartmanPontus Aberg23122
4Dalton SmithBeau BennettWilliam Carrier20122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jordan OesterleDylan DeMelo31122
2Viktor SvedbergNikita Nikitin26122
3Dylan OlsenJakub Kindl23122
4Jordan OesterleDylan DeMelo20122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Pontus AbergBrian FlynnRyan Hartman55122
2William CarrierCarter VerhaegheBeau Bennett45122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Jordan OesterleDylan DeMelo55122
2Viktor SvedbergNikita Nikitin45122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Ryan HartmanPontus Aberg55122
2Beau BennettWilliam Carrier45122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Jordan OesterleDylan DeMelo55122
2Viktor SvedbergNikita Nikitin45122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Ryan Hartman55122Jordan OesterleDylan DeMelo55122
2Pontus Aberg45122Viktor SvedbergNikita Nikitin45122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Ryan HartmanPontus Aberg55122
2Beau BennettWilliam Carrier45122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jordan OesterleDylan DeMelo55122
2Viktor SvedbergNikita Nikitin45122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Pontus AbergBrian FlynnRyan HartmanJordan OesterleDylan DeMelo
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Pontus AbergBrian FlynnRyan HartmanJordan OesterleDylan DeMelo
Extra Forwards
Normal PowerPlayPenalty Kill
Sergey Tolchinsky, Daniel Paille, Dalton SmithSergey Tolchinsky, Daniel PailleDalton Smith
Extra Defensemen
Normal PowerPlayPenalty Kill
Dylan Olsen, Jakub Kindl, Viktor SvedbergDylan OlsenJakub Kindl, Viktor Svedberg
Penalty Shots
Ryan Hartman, Pontus Aberg, Beau Bennett, William Carrier, Brian Flynn
Goalie
#1 : Thatcher Demko, #2 :
Custom OT Lines Forwards
Ryan Hartman, Pontus Aberg, Beau Bennett, William Carrier, Brian Flynn, Carter Verhaeghe, Carter Verhaeghe, Daniel Paille, Dalton Smith, Sergey Tolchinsky,
Custom OT Lines Defensemen
Jordan Oesterle, Dylan DeMelo, Viktor Svedberg, Nikita Nikitin, Dylan Olsen


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1BELLEVILLE Senators1010000001-1000000000001010000001-100.000000004447360223904254282207215000.00%10100.00%0710133653.14%521123042.36%27357447.56%1040765891265472238
2BRIDGEPORT Sound Tigers550000003873133000000204162200000018315101.0003868106014447360160390425428211638267914964.29%13284.62%0710133653.14%521123042.36%27357447.56%1040765891265472238
3CHICAGO Wolves522001001314-12100010052331200000812-450.5001324370044473601663904254282122522898900.00%14192.86%0710133653.14%521123042.36%27357447.56%1040765891265472238
4COLORADO Eagles3120000078-1211000006511010000013-220.33371320004447360863904254282732122541317.69%11554.55%0710133653.14%521123042.36%27357447.56%1040765891265472238
5HOLLYWOOD Oscar11000000707110000007070000000000021.000714210144473605539042542828507000.00%000.00%0710133653.14%521123042.36%27357447.56%1040765891265472238
6IOWA Wild11000000624110000006240000000000021.000611170044473604139042542823088144250.00%40100.00%0710133653.14%521123042.36%27357447.56%1040765891265472238
7LAVAL Rockets2020000028-61010000025-31010000003-300.0002240044473604839042542826021442400.00%2150.00%0710133653.14%521123042.36%27357447.56%1040765891265472238
8LEHIGH VALLEY Phantoms1010000025-31010000025-30000000000000.000246004447360293904254282291062310220.00%3166.67%0710133653.14%521123042.36%27357447.56%1040765891265472238
9MANITOBA Moose11000000606000000000001100000060621.0006111701444736079390425428200011000.00%000.00%0710133653.14%521123042.36%27357447.56%1040765891265472238
10MONT-LAURIER Sommet11000000321000000000001100000032121.0003690044473603739042542821552406233.33%000.00%0710133653.14%521123042.36%27357447.56%1040765891265472238
11PROVIDENCE Bruins1010000034-11010000034-10000000000000.00035800444736029390425428242118134125.00%4175.00%0710133653.14%521123042.36%27357447.56%1040765891265472238
12PV Sharapovas21100000413110000004041010000001-120.5004812014447360593904254282501014308337.50%70100.00%0710133653.14%521123042.36%27357447.56%1040765891265472238
13ROCKFORD IceHogs4210010078-1210001004402110000034-150.6257142100444736090390425428212848417213323.08%16381.25%0710133653.14%521123042.36%27357447.56%1040765891265472238
14SAN DIEGO Gulls2020000079-21010000034-11010000045-100.00071320004447360543904254282912328508112.50%13469.23%0710133653.14%521123042.36%27357447.56%1040765891265472238
15SYRACUSE Crunch1010000015-4000000000001010000015-400.00012300444736021390425428244141015100.00%40100.00%0710133653.14%521123042.36%27357447.56%1040765891265472238
16TORONTO Marlies11000000211000000000001100000021121.000246004447360403904254282297419200.00%20100.00%0710133653.14%521123042.36%27357447.56%1040765891265472238
Total402017003001279631201350020076423420712001005154-3430.5381272333600444473601245390425428210663322497081252822.40%1132181.42%0710133653.14%521123042.36%27357447.56%1040765891265472238
18UTICA Comets2110000056-1110000003211010000024-220.5005813004447360513904254282521410304250.00%4175.00%0710133653.14%521123042.36%27357447.56%1040765891265472238
19VICTORIAVILLE Tigres52200100914-52200000064230200100310-750.5009162500444736012239042542821493536802428.33%15286.67%0710133653.14%521123042.36%27357447.56%1040765891265472238
20WILKIES-BARRIE Penguins11000000514110000005140000000000021.0005101500444736056390425428283016100.00%000.00%0710133653.14%521123042.36%27357447.56%1040765891265472238
_Since Last GM Reset402017003001279631201350020076423420712001005154-3430.5381272333600444473601245390425428210663322497081252822.40%1132181.42%0710133653.14%521123042.36%27357447.56%1040765891265472238
_Vs Conference2512110020087652214840020051312011470000036342260.520871572440144473607403904254282692231167454701724.29%771876.62%0710133653.14%521123042.36%27357447.56%1040765891265472238
_Vs Division191090020048462963002002717101046000002129-8220.5794889137014447360584390425428250216413532963812.70%601181.67%0710133653.14%521123042.36%27357447.56%1040765891265472238

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4043W21272333601245106633224970804
All Games
GPWLOTWOTL SOWSOLGFGA
402017030012796
Home Games
GPWLOTWOTL SOWSOLGFGA
2013502007642
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2071201005154
Last 10 Games
WLOTWOTL SOWSOL
550000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1252822.40%1132181.42%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
39042542824447360
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
710133653.14%521123042.36%27357447.56%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1040765891265472238


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2019-01-236MILWAUKEE Admirals4CHICAGO Wolves5LBoxScore
2 - 2019-01-2418MILWAUKEE Admirals2ROCKFORD IceHogs1WBoxScore
3 - 2019-01-2525SAN DIEGO Gulls4MILWAUKEE Admirals3LBoxScore
5 - 2019-01-2744VICTORIAVILLE Tigres3MILWAUKEE Admirals4WBoxScore
7 - 2019-01-2960MILWAUKEE Admirals8BRIDGEPORT Sound Tigers1WBoxScore
8 - 2019-01-3064MILWAUKEE Admirals4SAN DIEGO Gulls5LBoxScore
9 - 2019-01-3177BRIDGEPORT Sound Tigers3MILWAUKEE Admirals4WBoxScore
12 - 2019-02-0397ROCKFORD IceHogs1MILWAUKEE Admirals2WBoxScore
13 - 2019-02-04105MILWAUKEE Admirals1COLORADO Eagles3LBoxScore
14 - 2019-02-05123MILWAUKEE Admirals3CHICAGO Wolves1WBoxScore
15 - 2019-02-06129COLORADO Eagles4MILWAUKEE Admirals3LBoxScore
17 - 2019-02-08149LAVAL Rockets5MILWAUKEE Admirals2LBoxScore
18 - 2019-02-09161MILWAUKEE Admirals10BRIDGEPORT Sound Tigers2WBoxScore
20 - 2019-02-11171ROCKFORD IceHogs3MILWAUKEE Admirals2LXBoxScore
21 - 2019-02-12176MILWAUKEE Admirals0LAVAL Rockets3LBoxScore
23 - 2019-02-14198MILWAUKEE Admirals1VICTORIAVILLE Tigres4LBoxScore
24 - 2019-02-15208PROVIDENCE Bruins4MILWAUKEE Admirals3LBoxScore
26 - 2019-02-17226PV Sharapovas0MILWAUKEE Admirals4WBoxScore
27 - 2019-02-18240MILWAUKEE Admirals0PV Sharapovas1LBoxScore
29 - 2019-02-20249BRIDGEPORT Sound Tigers0MILWAUKEE Admirals8WBoxScore
31 - 2019-02-22266VICTORIAVILLE Tigres1MILWAUKEE Admirals2WBoxScore
32 - 2019-02-23275MILWAUKEE Admirals2UTICA Comets4LBoxScore
33 - 2019-02-24292UTICA Comets2MILWAUKEE Admirals3WBoxScore
34 - 2019-02-25304MILWAUKEE Admirals2TORONTO Marlies1WBoxScore
36 - 2019-02-27316MILWAUKEE Admirals3MONT-LAURIER Sommet2WBoxScore
37 - 2019-02-28327MILWAUKEE Admirals1CHICAGO Wolves6LBoxScore
39 - 2019-03-02340CHICAGO Wolves1MILWAUKEE Admirals0LXBoxScore
40 - 2019-03-03354BRIDGEPORT Sound Tigers1MILWAUKEE Admirals8WBoxScore
42 - 2019-03-05368CHICAGO Wolves1MILWAUKEE Admirals5WBoxScore
44 - 2019-03-07383MILWAUKEE Admirals2VICTORIAVILLE Tigres3LXBoxScore
45 - 2019-03-08396MILWAUKEE Admirals0VICTORIAVILLE Tigres3LBoxScore
47 - 2019-03-10409MILWAUKEE Admirals1SYRACUSE Crunch5LBoxScore
48 - 2019-03-11416LEHIGH VALLEY Phantoms5MILWAUKEE Admirals2LBoxScore
49 - 2019-03-12433MILWAUKEE Admirals1ROCKFORD IceHogs3LBoxScore
50 - 2019-03-13442WILKIES-BARRIE Penguins1MILWAUKEE Admirals5WBoxScore
51 - 2019-03-14456MILWAUKEE Admirals6MANITOBA Moose0WBoxScore
53 - 2019-03-16467HOLLYWOOD Oscar0MILWAUKEE Admirals7WBoxScore
55 - 2019-03-18487MILWAUKEE Admirals0BELLEVILLE Senators1LBoxScore
56 - 2019-03-19494COLORADO Eagles1MILWAUKEE Admirals3WBoxScore
57 - 2019-03-20509IOWA Wild2MILWAUKEE Admirals6WBoxScore
59 - 2019-03-22524MILWAUKEE Admirals-IOWA Wild-
60 - 2019-03-23535VICTORIAVILLE Tigres-MILWAUKEE Admirals-
62 - 2019-03-25551MILWAUKEE Admirals-IOWA Wild-
63 - 2019-03-26563MILWAUKEE Admirals-BROOKLYN Wolfpack-
64 - 2019-03-27572MANITOBA Moose-MILWAUKEE Admirals-
66 - 2019-03-29590SYRACUSE Crunch-MILWAUKEE Admirals-
67 - 2019-03-30600MILWAUKEE Admirals-HERSEY Bears-
69 - 2019-04-01617BELLEVILLE Senators-MILWAUKEE Admirals-
70 - 2019-04-02629BROOKLYN Wolfpack-MILWAUKEE Admirals-
71 - 2019-04-03640MILWAUKEE Admirals-ROCKFORD IceHogs-
73 - 2019-04-05648MILWAUKEE Admirals-WILKIES-BARRIE Penguins-
74 - 2019-04-06667CHICAGO Wolves-MILWAUKEE Admirals-
76 - 2019-04-08680ROCKFORD IceHogs-MILWAUKEE Admirals-
78 - 2019-04-10696MILWAUKEE Admirals-COLORADO Eagles-
79 - 2019-04-11706MILWAUKEE Admirals-BRIDGEPORT Sound Tigers-
80 - 2019-04-12719MONT-LAURIER Sommet-MILWAUKEE Admirals-
82 - 2019-04-14737HERSEY Bears-MILWAUKEE Admirals-
83 - 2019-04-15748MILWAUKEE Admirals-MANITOBA Moose-
84 - 2019-04-16757MILWAUKEE Admirals-STOCKTON Flames-
85 - 2019-04-17773TORONTO Marlies-MILWAUKEE Admirals-
87 - 2019-04-19789LAVAL Rockets-MILWAUKEE Admirals-
89 - 2019-04-21805MILWAUKEE Admirals-CLEVELAND Monsters-
90 - 2019-04-22813COLORADO Eagles-MILWAUKEE Admirals-
92 - 2019-04-24824MILWAUKEE Admirals-PROVIDENCE Bruins-
93 - 2019-04-25833MILWAUKEE Admirals-HOLLYWOOD Oscar-
94 - 2019-04-26847SAN DIEGO Gulls-MILWAUKEE Admirals-
95 - 2019-04-27857MILWAUKEE Admirals-TUSCON Roadrunners-
96 - 2019-04-28867MILWAUKEE Admirals-COLORADO Eagles-
98 - 2019-04-30882CLEVELAND Monsters-MILWAUKEE Admirals-
100 - 2019-05-02902LAVAL Rockets-MILWAUKEE Admirals-
101 - 2019-05-03913MILWAUKEE Admirals-CORNWALL Aces-
103 - 2019-05-05926PROVIDENCE Bruins-MILWAUKEE Admirals-
104 - 2019-05-06939MILWAUKEE Admirals-SAN DIEGO Gulls-
106 - 2019-05-08951SAN DIEGO Gulls-MILWAUKEE Admirals-
107 - 2019-05-09964MILWAUKEE Admirals-SAN DIEGO Gulls-
108 - 2019-05-10975MILWAUKEE Admirals-LEHIGH VALLEY Phantoms-
109 - 2019-05-11987CORNWALL Aces-MILWAUKEE Admirals-
111 - 2019-05-13996MILWAUKEE Admirals-LAVAL Rockets-
Trade Deadline --- Trades can’t be done after this day is simulated!
112 - 2019-05-141012TUSCON Roadrunners-MILWAUKEE Admirals-
114 - 2019-05-161026MILWAUKEE Admirals-LAVAL Rockets-
116 - 2019-05-181039STOCKTON Flames-MILWAUKEE Admirals-
118 - 2019-05-201060PROVIDENCE Bruins-MILWAUKEE Admirals-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
21 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,156,821$ 1,785,000$ 1,785,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 842,635$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 62 20,292$ 1,258,104$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
287846903200133704-571394310220073342-269390380100060362-30281332643970059422931663567542549565631776149852100.00%7357.14%038096139.54%591231925.49%398147926.91%7094473216494757258
30822790010062812-750412390000042401-359410400010020411-391462124186002625110952297334317470242023207473825.26%12558.33%020268029.71%381237716.03%248144117.21%4212523839491661161
31824432012213131851284121150112116089714123170010015396578831357989211515576794280290097392017189760460816282184621.10%2633885.55%91480260956.73%1062225947.01%705126955.56%224216541708534990517
32402017003001279631201350020076423420712001005154-3431272333600444473601245390425428210663322497081252822.40%1132181.42%0710133653.14%521123042.36%27357447.56%1040765891265472238
Total Regular Season28270197048216351797-1162141409003521351874-5231413010701300284923-63914363512001835119284190155766622154227422142816550473589140684027618.91%3956783.04%92772558649.62%2555818531.22%1624476334.10%441331209656178528821177