MILWAUKEE Admirals

GP: 8 | W: 5 | L: 2 | OTL: 1 | P: 11
GF: 26 | GA: 18 | PP%: 16.00% | PK%: 76.92%
DG: Louis Bourgault | Morale : 99 | Moyenne d'Équipe : 66
Prochain matchs #123 vs BELLEVILLE Senators
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Beau Bennett0X100.006445896379858761646257595677696699690
2Brett Murray (R)0X100.008347895897858757545655625863626499690
3Carter Verhaeghe0X100.005839866473798162726361656469666299680
4Rocco Grimaldi0XX100.005837826862728167537063616773686699680
5Emil Bemstrom (R)0X100.007139886872747566536567626861656399680
6Markus Hannikainen0X100.006439866277807863546060596373675499670
7Pontus Aberg0XX100.005943836673757265586364616673676499670
8Dalton Smith0X100.006452785982777558515756605975686499650
9Tomas Hyka (R)0X100.005135736964585868566665576651504799610
10Sergey Tolchinsky0X100.004842746054536060506257605750504499570
11Maxime Lajoie (R)0X100.006142896677837963306461655265635899680
12Tucker Poolman (R)0X100.005939876280836761306958635073684999670
13Thomas Schemitsch0X100.007051865786888556305554584567645699660
14John Ramage0X100.005089606672505066305247505750505199550
Rayé
MOYENNE D'ÉQUIPE100.00614682637574746249625960596663589965
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Thatcher Demko100.00797876857877797877797869737699710
2Charlie Lindgren100.00756563737473757473757473775899670
3Samuel Montembeault (R)100.00676872816971706969666650594499610
Rayé
MOYENNE D'ÉQUIPE100.0074707080747475747373736470599966
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Davis Payne70707070757570CAN503300,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Brett MurrayMILWAUKEE Admirals (NSH)LW86392602073161619.35%220826.11101720000092253.66%4100000.8601000210
2Emil BemstromMILWAUKEE Admirals (NSH)C863942092044124113.64%219023.84202619000060046.72%13700010.9411000200
3Rocco GrimaldiMILWAUKEE Admirals (NSH)C/RW871832081436112519.44%117521.97011422000173152.54%17700000.9101000031
4Pontus AbergMILWAUKEE Admirals (NSH)LW/RW8178020963411152.94%116420.550111022000000062.50%800000.9700000100
5Markus HannikainenMILWAUKEE Admirals (NSH)LW806630048242120.00%314918.6800002000090026.67%1500000.8000000000
6Maxime LajoieMILWAUKEE Admirals (NSH)D806608011597110.00%1722328.0003362000006000.00%000000.5400000000
7Carter VerhaegheMILWAUKEE Admirals (NSH)C82353003112062010.00%412515.6400000000030053.57%11200000.8000000000
8Tucker PoolmanMILWAUKEE Admirals (NSH)D8055-1201311109100.00%1022428.03022420000010000.00%000000.4500000000
9Dalton SmithMILWAUKEE Admirals (NSH)LW813442011313577.69%310212.8400000000100042.86%700000.7800000001
10Beau BennettMILWAUKEE Admirals (NSH)RW8134620713256204.00%420826.050003190000110057.27%11000000.3801000000
11Tomas HykaMILWAUKEE Admirals (NSH)RW813400089218144.76%015819.87000421000000064.29%1400000.5000000010
12Sergey TolchinskyMILWAUKEE Admirals (NSH)LW8022120212120.00%2658.1800002000030075.00%800000.6100000000
13John RamageMILWAUKEE Admirals (NSH)D81015206340125.00%817521.9810131900008000.00%000000.1100000000
14Thomas SchemitschMILWAUKEE Admirals (NSH)D801152010107030.00%1321526.95000420000011000.00%000000.0900000000
Stats d'équipe Total ou en Moyenne11226467235320121121280841979.29%70238921.344711512100002895352.31%62900010.6014000552
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Thatcher DemkoMILWAUKEE Admirals (NSH)85210.9221.9649101162060010.500480101
Stats d'équipe Total ou en Moyenne85210.9221.9649101162060010.500480101


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Salaire RestantSalaire MoyenSalaire Moyen RestantCap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Beau BennettMILWAUKEE Admirals (NSH)RW281991-11-27No89 Kg188 CMNoNoNo1Pro & Farm750,000$674,311$750,000$674,311$0$0$NoLien
Brett MurrayMILWAUKEE Admirals (NSH)LW221998-07-20Yes107 Kg196 CMNoNoNo4Pro & Farm750,000$674,311$750,000$674,311$0$0$No750,000$750,000$750,000$
Carter VerhaegheMILWAUKEE Admirals (NSH)C251995-08-14No80 Kg185 CMNoNoNo1Pro & Farm750,000$674,311$750,000$674,311$0$0$NoLien
Charlie LindgrenMILWAUKEE Admirals (NSH)G261993-12-18No82 Kg185 CMNoNoNo1Pro & Farm750,000$674,311$750,000$674,311$0$0$NoLien
Dalton SmithMILWAUKEE Admirals (NSH)LW281992-06-30No94 Kg188 CMNoNoNo1Pro & Farm750,000$674,311$750,000$674,311$0$0$NoLien
Emil BemstromMILWAUKEE Admirals (NSH)C211999-06-01Yes86 Kg183 CMNoNoNo4Pro & Farm750,000$674,311$750,000$674,311$0$0$No750,000$750,000$750,000$
John RamageMILWAUKEE Admirals (NSH)D291991-02-07No86 Kg183 CMNoNoNo2Pro & Farm750,000$674,311$750,000$674,311$0$0$No750,000$Lien
Markus HannikainenMILWAUKEE Admirals (NSH)LW271993-03-26No91 Kg185 CMNoNoNo1Pro & Farm750,000$674,311$750,000$674,311$0$0$NoLien
Maxime LajoieMILWAUKEE Admirals (NSH)D221997-11-05Yes89 Kg185 CMNoNoNo4Pro & Farm750,000$674,311$750,000$674,311$0$0$No750,000$750,000$750,000$
Pontus AbergMILWAUKEE Admirals (NSH)LW/RW261993-09-23No88 Kg183 CMNoNoNo4Pro & Farm750,000$674,311$750,000$674,311$0$0$No750,000$750,000$750,000$Lien
Rocco GrimaldiMILWAUKEE Admirals (NSH)C/RW271993-02-08No82 Kg168 CMNoNoNo2Pro & Farm1,500,000$1,348,623$1,500,000$1,348,623$0$0$No1,500,000$Lien
Samuel Montembeault (Contrat à 1 Volet)MILWAUKEE Admirals (NSH)G231996-10-30Yes87 Kg191 CMNoNoNo3Pro & Farm750,000$675,675$750,000$675,675$750,000$675,676$No750,000$750,000$Lien
Sergey TolchinskyMILWAUKEE Admirals (NSH)LW251995-02-03No77 Kg173 CMNoNoNo1Pro & Farm750,000$674,311$750,000$674,311$0$0$NoLien
Thatcher DemkoMILWAUKEE Admirals (NSH)G241995-12-08No87 Kg193 CMNoNoNo4Pro & Farm1,000,000$899,082$1,000,000$899,082$0$0$No1,000,000$1,000,000$1,000,000$Lien
Thomas SchemitschMILWAUKEE Admirals (NSH)D231996-10-26No91 Kg193 CMNoNoNo2Pro & Farm750,000$674,311$750,000$674,311$0$0$No750,000$Lien
Tomas HykaMILWAUKEE Admirals (NSH)RW271993-03-23Yes73 Kg180 CMNoNoNo1Pro & Farm750,000$674,311$750,000$674,311$0$0$NoLien
Tucker PoolmanMILWAUKEE Admirals (NSH)D271993-06-08Yes90 Kg188 CMNoNoNo4Pro & Farm750,000$674,311$750,000$674,311$0$0$No750,000$750,000$750,000$
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
1725.2987 Kg185 CM2.35808,824$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Brett MurrayEmil BemstromBeau Bennett31122
2Pontus AbergRocco GrimaldiTomas Hyka26122
3Markus HannikainenCarter VerhaegheBrett Murray23122
4Dalton SmithBeau BennettEmil Bemstrom20122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Maxime LajoieTucker Poolman31122
2Thomas SchemitschJohn Ramage26122
3Maxime LajoieTucker Poolman23122
4Thomas SchemitschJohn Ramage20122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Brett MurrayEmil BemstromBeau Bennett55122
2Pontus AbergRocco GrimaldiTomas Hyka45122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Maxime LajoieTucker Poolman55122
2Thomas SchemitschJohn Ramage45122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Brett MurrayBeau Bennett55122
2Emil BemstromRocco Grimaldi45122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Maxime LajoieTucker Poolman55122
2Thomas SchemitschJohn Ramage45122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Brett Murray55122Maxime LajoieTucker Poolman55122
2Beau Bennett45122Thomas SchemitschJohn Ramage45122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Brett MurrayBeau Bennett55122
2Emil BemstromRocco Grimaldi45122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Maxime LajoieTucker Poolman55122
2Thomas SchemitschJohn Ramage45122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Brett MurrayEmil BemstromBeau BennettMaxime LajoieTucker Poolman
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Brett MurrayEmil BemstromBeau BennettMaxime LajoieTucker Poolman
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Sergey Tolchinsky, Carter Verhaeghe, Markus HannikainenSergey Tolchinsky, Carter VerhaegheMarkus Hannikainen
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Maxime Lajoie, Tucker Poolman, Thomas SchemitschMaxime LajoieTucker Poolman, Thomas Schemitsch
Tirs de Pénalité
Brett Murray, Beau Bennett, Emil Bemstrom, Rocco Grimaldi, Carter Verhaeghe
Gardien
#1 : Thatcher Demko, #2 : Charlie Lindgren, #3 : Samuel Montembeault
Lignes d'Attaque Perso. en Prol.
Brett Murray, Beau Bennett, Emil Bemstrom, Rocco Grimaldi, Carter Verhaeghe, Pontus Aberg, Pontus Aberg, Markus Hannikainen, Dalton Smith, Tomas Hyka, Sergey Tolchinsky
Lignes de Défense Perso. en Prol.
Maxime Lajoie, Tucker Poolman, Thomas Schemitsch, John Ramage,


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1BELLEVILLE Senators1010000013-21010000013-20000000000000.0001231087842775891091121810123133.33%3166.67%014824660.16%12424550.61%5712246.72%2211651695310151
2COLORADO Eagles11000000101110000001010000000000021.000112018784207589109112315212100.00%10100.00%014824660.16%12424550.61%5712246.72%2211651695310151
3HOLLYWOOD Oscar10001000211000000000001000100021121.0002460087844375891091125102101000.00%10100.00%014824660.16%12424550.61%5712246.72%2211651695310151
4IOWA Wild10001000431100010004310000000000021.000461000878432758910911196219200.00%10100.00%014824660.16%12424550.61%5712246.72%2211651695310151
5Quebec Nordiques1010000023-11010000023-10000000000000.00024600878439758910911335611000.00%20100.00%014824660.16%12424550.61%5712246.72%2211651695310151
6SAN DIEGO Gulls1100000010280000000000011000000102821.000101929008784657589109111740262150.00%000.00%014824660.16%12424550.61%5712246.72%2211651695310151
7TUSCON Roadrunners10001000321100010003210000000000021.000358008784307589109113184184250.00%20100.00%014824660.16%12424550.61%5712246.72%2211651695310151
Total82203001261885120200011110310010011578110.688264672118784280758910911207703212125416.00%13376.92%014824660.16%12424550.61%5712246.72%2211651695310151
9WILKIES-BARRIE Penguins1000000134-1000000000001000000134-110.500358008784247589109113814613300.00%3233.33%014824660.16%12424550.61%5712246.72%2211651695310151
_Since Last GM Reset82203001261885120200011110310010011578110.688264672118784280758910911207703212125416.00%13376.92%014824660.16%12424550.61%5712246.72%2211651695310151
_Vs Conference32001000144102100100042211000000102861.00014253901878411575891091171276567342.86%30100.00%014824660.16%12424550.61%5712246.72%2211651695310151
_Vs Division22000000532210000005320100000000041.0005712018784527589109114221431300.00%20100.00%014824660.16%12424550.61%5712246.72%2211651695310151

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
811L1264672280207703212111
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
82230012618
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
51220001111
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
3101001157
Derniers 10 Matchs
WLOTWOTL SOWSOL
520001
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
25416.00%13376.92%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
7589109118784
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
14824660.16%12424550.61%5712246.72%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
2211651695310151


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
1 - 2020-08-028MILWAUKEE Admirals10SAN DIEGO Gulls2WSommaire du Match
2 - 2020-08-0323COLORADO Eagles0MILWAUKEE Admirals1WSommaire du Match
4 - 2020-08-0531IOWA Wild3MILWAUKEE Admirals4WXSommaire du Match
6 - 2020-08-0752MILWAUKEE Admirals2HOLLYWOOD Oscar1WXSommaire du Match
7 - 2020-08-0864MILWAUKEE Admirals3WILKIES-BARRIE Penguins4LXXSommaire du Match
8 - 2020-08-0974BELLEVILLE Senators3MILWAUKEE Admirals1LSommaire du Match
10 - 2020-08-1190TUSCON Roadrunners2MILWAUKEE Admirals3WXSommaire du Match
11 - 2020-08-12105Quebec Nordiques3MILWAUKEE Admirals2LSommaire du Match
12 - 2020-08-13123BELLEVILLE Senators-MILWAUKEE Admirals-
13 - 2020-08-14131MILWAUKEE Admirals-LAVAL Rockets-
15 - 2020-08-16149MILWAUKEE Admirals-BRIDGEPORT Sound Tigers-
16 - 2020-08-17157ROCKFORD IceHogs-MILWAUKEE Admirals-
19 - 2020-08-20182MONT-LAURIER Sommet-MILWAUKEE Admirals-
21 - 2020-08-22200MILWAUKEE Admirals-BROOKLYN Wolfpack-
22 - 2020-08-23210Manitoba Moose-MILWAUKEE Admirals-
23 - 2020-08-24226MILWAUKEE Admirals-LAVAL Rockets-
24 - 2020-08-25237COLORADO Eagles-MILWAUKEE Admirals-
26 - 2020-08-27253MILWAUKEE Admirals-BELLEVILLE Senators-
27 - 2020-08-28266MILWAUKEE Admirals-HERSEY Bears-
28 - 2020-08-29276ROCKFORD IceHogs-MILWAUKEE Admirals-
29 - 2020-08-30289Quebec Nordiques-MILWAUKEE Admirals-
31 - 2020-09-01305MILWAUKEE Admirals-TUSCON Roadrunners-
32 - 2020-09-02314SAN DIEGO Gulls-MILWAUKEE Admirals-
33 - 2020-09-03328MILWAUKEE Admirals-PROVIDENCE Bruins-
34 - 2020-09-04339UTICA Comets-MILWAUKEE Admirals-
37 - 2020-09-07363UTICA Comets-MILWAUKEE Admirals-
38 - 2020-09-08375MILWAUKEE Admirals-WILKIES-BARRIE Penguins-
39 - 2020-09-09382MILWAUKEE Admirals-BELLEVILLE Senators-
40 - 2020-09-10391HOLLYWOOD Oscar-MILWAUKEE Admirals-
42 - 2020-09-12411MILWAUKEE Admirals-SAN DIEGO Gulls-
43 - 2020-09-13420VICTORIAVILLE Tigres-MILWAUKEE Admirals-
46 - 2020-09-16442MILWAUKEE Admirals-HERSEY Bears-
47 - 2020-09-17451STOCKTON Flames-MILWAUKEE Admirals-
48 - 2020-09-18466LEHIGH VALLEY Phantoms-MILWAUKEE Admirals-
50 - 2020-09-20484MILWAUKEE Admirals-Syracruse Crunch-
51 - 2020-09-21494MILWAUKEE Admirals-STOCKTON Flames-
52 - 2020-09-22500IOWA Wild-MILWAUKEE Admirals-
54 - 2020-09-24521MONT-LAURIER Sommet-MILWAUKEE Admirals-
56 - 2020-09-26539MILWAUKEE Admirals-IOWA Wild-
57 - 2020-09-27549WILKIES-BARRIE Penguins-MILWAUKEE Admirals-
58 - 2020-09-28566MILWAUKEE Admirals-HOLLYWOOD Oscar-
59 - 2020-09-29576STOCKTON Flames-MILWAUKEE Admirals-
61 - 2020-10-01593MILWAUKEE Admirals-ROCKFORD IceHogs-
62 - 2020-10-02605HERSEY Bears-MILWAUKEE Admirals-
64 - 2020-10-04624MILWAUKEE Admirals-PV Sharapovas-
65 - 2020-10-05634VICTORIAVILLE Tigres-MILWAUKEE Admirals-
66 - 2020-10-06645MILWAUKEE Admirals-MONT-LAURIER Sommet-
67 - 2020-10-07655CHICAGO Wolves-MILWAUKEE Admirals-
69 - 2020-10-09677Marlies de Toronto-MILWAUKEE Admirals-
70 - 2020-10-10691MILWAUKEE Admirals-BROOKLYN Wolfpack-
71 - 2020-10-11701PV Sharapovas-MILWAUKEE Admirals-
72 - 2020-10-12716MILWAUKEE Admirals-HOLLYWOOD Oscar-
73 - 2020-10-13726CHICAGO Wolves-MILWAUKEE Admirals-
75 - 2020-10-15744MILWAUKEE Admirals-VICTORIAVILLE Tigres-
77 - 2020-10-17755Binghampton Devils-MILWAUKEE Admirals-
79 - 2020-10-19775MILWAUKEE Admirals-Manitoba Moose-
80 - 2020-10-20785BROOKLYN Wolfpack-MILWAUKEE Admirals-
81 - 2020-10-21797MILWAUKEE Admirals-UTICA Comets-
82 - 2020-10-22807TUSCON Roadrunners-MILWAUKEE Admirals-
83 - 2020-10-23816MILWAUKEE Admirals-CHICAGO Wolves-
84 - 2020-10-24830MILWAUKEE Admirals-Quebec Nordiques-
85 - 2020-10-25836BRIDGEPORT Sound Tigers-MILWAUKEE Admirals-
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
87 - 2020-10-27859PROVIDENCE Bruins-MILWAUKEE Admirals-
88 - 2020-10-28865MILWAUKEE Admirals-LEHIGH VALLEY Phantoms-
89 - 2020-10-29883Syracruse Crunch-MILWAUKEE Admirals-
90 - 2020-10-30888MILWAUKEE Admirals-PROVIDENCE Bruins-
92 - 2020-11-01911Syracruse Crunch-MILWAUKEE Admirals-
94 - 2020-11-03925MILWAUKEE Admirals-WILKIES-BARRIE Penguins-
95 - 2020-11-04938PV Sharapovas-MILWAUKEE Admirals-
96 - 2020-11-05950MILWAUKEE Admirals-Binghampton Devils-
97 - 2020-11-06963BRIDGEPORT Sound Tigers-MILWAUKEE Admirals-
98 - 2020-11-07972MILWAUKEE Admirals-COLORADO Eagles-
100 - 2020-11-09984MILWAUKEE Admirals-Manitoba Moose-
101 - 2020-11-10990LAVAL Rockets-MILWAUKEE Admirals-
102 - 2020-11-11997MILWAUKEE Admirals-Marlies de Toronto-
103 - 2020-11-121003MILWAUKEE Admirals-BRIDGEPORT Sound Tigers-
104 - 2020-11-131015MILWAUKEE Admirals-Binghampton Devils-
105 - 2020-11-141019LAVAL Rockets-MILWAUKEE Admirals-
106 - 2020-11-151027MILWAUKEE Admirals-Marlies de Toronto-
107 - 2020-11-161035MILWAUKEE Admirals-LEHIGH VALLEY Phantoms-



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
35 0 - 0.00% 0$0$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
136,700$ 1,300,000$ 1,300,000$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 133,948$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 98 11,927$ 1,168,846$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison Régulière
3382492204223364144220412590221218361122412413020111818398983646521016019174101837368012021214124734187855750313642463614.63%2152687.91%51725280161.59%1079216549.84%724121359.69%247919201562475913497
348220300126188512020001111031001001157811264672118784280758910911207703212125416.00%13376.92%014824660.16%12424550.61%5712246.72%2211651695310151
Total Saison Régulière905124072243901622284626110421219472122442513030121969010610939069810881201821089111396012771303135645208562753514852714014.76%2282987.28%51873304761.47%1203241049.92%781133558.50%2700208617325291014549
Séries
3351400000912-32110000042230300000510-52917261131501273934459204594811017211.76%22290.91%06215141.06%9121941.55%287437.84%11983146416731
Total Séries51400000912-32110000042230300000510-52917261131501273934459204594811017211.76%22290.91%06215141.06%9121941.55%287437.84%11983146416731