CHICAGO Wolves

GP: 79 | W: 38 | L: 38 | OTL: 3 | P: 79
GF: 259 | GA: 221 | PP%: 21.43% | PK%: 82.22%
GM : Lukas Tremblay | Morale : 96 | Team Overall : 60
Next Games #1041 vs LAVAL Rockets
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Justin Auger0X100.007443706095598456515657605750506080640
2Dominic Turgeon (R)0X100.006542746176609158665758685850506881640
3Alexander Volkov (R)0X100.006245646072619260505861606150504481630
4Kyle Baun0X100.006943716080588855505753605350504281620
5Shane Prince0XX100.005941826967773558305959596455536481600
6Taylor Beck0XX100.005135767176484262305857565764615581590
7Alexander Khokhlachev0XX100.004535807561494162425958596558497981570
8Blaine Byron (R)0X100.004841776563535655505456605650504489570
9Rourke Chartier0X100.005240796045714560676158605850504481570
10Ian McCoshen (R)0X100.007542836583755767315263657452517881640
11Joe Hicketts (R)0X100.005543725257548953304746725350504489570
12Anthony DeAngelo0X100.005440738064545257303739607656528781550
13Mark Friedman (R)0X100.005942755046528254304944605150504489540
Scratches
TEAM AVERAGE100.00594175646859665843545561605351588359
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Jordan Binnington100.00696470676969706969696650606172600
Scratches
TEAM AVERAGE100.0069647067696970696969665060617260
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Ralph Krueger66666666777752CAN59481,800$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Ian McCoshenCHICAGO Wolves (STL)D79306898233201591062397115912.55%144204425.87121022811670000975250.00%1000010.9600000568
2Alexander VolkovCHICAGO Wolves (STL)LW78335184343759510931010025910.65%36181923.33268281470002757159.39%26100000.9202100716
3Dominic TurgeonCHICAGO Wolves (STL)C7932508230180881603099122910.36%33189323.9721113311490003971265.40%145100000.8712000426
4Rourke ChartierCHICAGO Wolves (STL)C793443772140422012837321712.01%38159320.1709912720000486064.58%153300020.9700000564
5Shane PrinceCHICAGO Wolves (STL)C/LW79194867-1926092156272741936.99%65189123.942810351630000605048.79%135900000.7101000325
6Kyle BaunCHICAGO Wolves (STL)RW792636625260180822285716111.40%24181522.99257261390001714055.63%16000000.6801000253
7Taylor BeckCHICAGO Wolves (STL)LW/RW79273461-19604199302841898.94%14156919.865712271520000213050.26%19100010.7800000230
8Justin AugerCHICAGO Wolves (STL)RW7923345724455163111237721689.70%41189523.99549331480000881065.37%28300010.6002100153
9Alexander KhokhlachevCHICAGO Wolves (STL)C/LW79143246216035112184631487.61%54153719.47459311050000153056.62%74000000.6000000011
10Anthony DeAngeloCHICAGO Wolves (STL)D7992332-64801015110133658.91%82171021.654913361330000850050.00%1600000.3700000012
11Jake DotchinST-LOUIS BluesD3182129-614058479021648.89%6884327.2242634810000353028.00%2500000.6900000321
12Joe HickettsCHICAGO Wolves (STL)D1631013222028162841410.71%1433521.00224932000017000.00%000000.7700000000
13Blaine ByronCHICAGO Wolves (STL)C16145600107318153.23%118711.73123313000040050.00%1800000.5300000000
14Mark FriedmanCHICAGO Wolves (STL)D1604491001657480.00%1827817.400001700002000.00%000000.2900000000
Team Total or Average8682594587171063041011081262262175518899.88%6321941722.3745801253871514000672138559.12%604700050.7418200323439
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jordan BinningtonCHICAGO Wolves (STL)79383830.9072.74460741121022540520.6258790630
Team Total or Average79383830.9072.74460741121022540520.6258790630


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Alexander KhokhlachevCHICAGO Wolves (STL)C/LW249/9/1993No82 Kg178 CMNoNoNo1RFAPro & Farm750,000$0$0$No
Alexander VolkovCHICAGO Wolves (STL)LW218/2/1997Yes87 Kg185 CMNoNoNo2RFAPro & Farm735,000$0$0$NoLink
Anthony DeAngeloCHICAGO Wolves (STL)D2210/24/1995No83 Kg180 CMNoNoNo1RFAPro & Farm865,000$0$0$No
Blaine ByronCHICAGO Wolves (STL)C232/21/1995Yes78 Kg183 CMNoNoNo1RFAPro & Farm325,000$0$0$NoLink
Dominic TurgeonCHICAGO Wolves (STL)C222/25/1996Yes91 Kg188 CMNoNoNo2RFAPro & Farm750,000$0$0$NoLink
Ian McCoshenCHICAGO Wolves (STL)D238/5/1995Yes99 Kg191 CMNoNoNo2RFAPro & Farm735,000$0$0$NoLink
Joe HickettsCHICAGO Wolves (STL)D225/4/1996Yes82 Kg173 CMNoNoNo1RFAPro & Farm325,000$0$0$NoLink
Jordan BinningtonCHICAGO Wolves (STL)G257/11/1993No76 Kg185 CMNoNoNo3RFAPro & Farm750,000$0$0$NoLink
Justin AugerCHICAGO Wolves (STL)RW245/14/1994No105 Kg198 CMNoNoNo1RFAPro & Farm750,000$0$0$NoLink
Kyle BaunCHICAGO Wolves (STL)RW265/4/1992No95 Kg188 CMNoNoNo1RFAPro & Farm750,000$0$0$NoLink
Mark FriedmanCHICAGO Wolves (STL)D2212/25/1995Yes84 Kg155 CMNoNoNo1RFAPro & Farm325,000$0$0$NoLink
Rourke ChartierCHICAGO Wolves (STL)C224/3/1996No86 Kg155 CMNoNoNo2RFAPro & Farm735,000$0$0$NoLink
Shane PrinceCHICAGO Wolves (STL)C/LW2511/16/1992No88 Kg180 CMNoNoNo2RFAPro & Farm700,000$0$0$NoLink
Taylor BeckCHICAGO Wolves (STL)LW/RW275/13/1991No92 Kg188 CMNoNoNo1RFAPro & Farm500,000$0$0$No
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1423.4388 Kg180 CM1.50642,500$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Alexander VolkovDominic TurgeonJustin Auger31122
2Taylor BeckShane PrinceKyle Baun26122
3Dominic TurgeonAlexander KhokhlachevJustin Auger23122
4Alexander VolkovRourke ChartierKyle Baun20122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ian McCoshen31122
2Joe HickettsAnthony DeAngelo26122
3Mark Friedman23122
4Ian McCoshenJoe Hicketts20122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Alexander VolkovDominic TurgeonJustin Auger55122
2Taylor BeckShane PrinceKyle Baun45122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Ian McCoshen55122
2Joe HickettsAnthony DeAngelo45122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Dominic TurgeonJustin Auger55122
2Alexander VolkovKyle Baun45122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Ian McCoshen55122
2Joe HickettsAnthony DeAngelo45122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Dominic Turgeon55122Ian McCoshen55122
2Justin Auger45122Joe HickettsAnthony DeAngelo45122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Dominic TurgeonJustin Auger55122
2Alexander VolkovKyle Baun45122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ian McCoshen55122
2Joe HickettsAnthony DeAngelo45122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Alexander VolkovDominic TurgeonJustin AugerIan McCoshen
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Alexander VolkovDominic TurgeonJustin AugerIan McCoshen
Extra Forwards
Normal PowerPlayPenalty Kill
Blaine Byron, Alexander Khokhlachev, Rourke ChartierBlaine Byron, Alexander KhokhlachevRourke Chartier
Extra Defensemen
Normal PowerPlayPenalty Kill
Mark Friedman, Anthony DeAngelo, Mark FriedmanAnthony DeAngelo,
Penalty Shots
Dominic Turgeon, Justin Auger, Alexander Volkov, Kyle Baun, Shane Prince
Goalie
#1 : Jordan Binnington, #2 :
Custom OT Lines Forwards
Dominic Turgeon, Justin Auger, Alexander Volkov, Kyle Baun, Shane Prince, Taylor Beck, Taylor Beck, Alexander Khokhlachev, Rourke Chartier, Blaine Byron,
Custom OT Lines Defensemen
, Ian McCoshen, Joe Hicketts, Anthony DeAngelo, Mark Friedman


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1BELLEVILLE Senators2020000058-31010000024-21010000034-100.00051015101138854558855911847377115033900.00%000.00%01612255962.99%1254242751.67%749126359.30%199614601801513962490
2BRIDGEPORT Sound Tigers6600000043142933000000207133300000023716121.000437712000113885451748559118473719353307414857.14%14285.71%01612255962.99%1254242751.67%749126359.30%199614601801513962490
3BROOKLYN Wolfpack220000002102111000000120121100000090941.000213859021138854522385591184737168022000.00%000.00%01612255962.99%1254242751.67%749126359.30%199614601801513962490
4CLEVELAND Monsters2020000048-41010000024-21010000024-200.00047111011388545428559118473776196343133.33%20100.00%01612255962.99%1254242751.67%749126359.30%199614601801513962490
5COLORADO Eagles724001001422-83210000087140300100615-950.35714264001113885451448559118473721155379923626.09%16568.75%01612255962.99%1254242751.67%749126359.30%199614601801513962490
6CORNWALL Aces1100000010281100000010280000000000021.000101828001138854554855911847371510620200.00%30100.00%01612255962.99%1254242751.67%749126359.30%199614601801513962490
7HERSEY Bears21100000220110000002021010000002-220.5002350111388545348559118473757181026200.00%40100.00%01612255962.99%1254242751.67%749126359.30%199614601801513962490
8HOLLYWOOD Oscar220000001401411000000100101100000040441.000142337021138854516485591184737115225300.00%10100.00%01612255962.99%1254242751.67%749126359.30%199614601801513962490
9IOWA Wild3200100013672200000010461000100032161.00013253800113885458585591184737811912395240.00%6183.33%01612255962.99%1254242751.67%749126359.30%199614601801513962490
10LAVAL Rockets505000001029-1930300000616-1020200000413-900.00010172700113885451238559118473721450286317211.76%13376.92%01612255962.99%1254242751.67%749126359.30%199614601801513962490
11LEHIGH VALLEY Phantoms2020000024-21010000012-11010000012-100.0002460011388545408559118473763141426700.00%60100.00%01612255962.99%1254242751.67%749126359.30%199614601801513962490
12MANITOBA Moose2200000013013110000006061100000070741.00013233602113885451738559118473775435000.00%20100.00%01612255962.99%1254242751.67%749126359.30%199614601801513962490
13MILWAUKEE Admirals63201000181533210000012843110100067-180.66718325001113885451438559118473720871228717211.76%11190.91%01612255962.99%1254242751.67%749126359.30%199614601801513962490
14MONT-LAURIER Sommet43100000963220000005142110000045-160.75091524011138854513985591184737932612688337.50%5180.00%01612255962.99%1254242751.67%749126359.30%199614601801513962490
15PROVIDENCE Bruins2020000035-21010000023-11010000012-100.000358001138854545855911847379216282911218.18%12283.33%01612255962.99%1254242751.67%749126359.30%199614601801513962490
16PV Sharapovas2110000036-31010000015-41100000021120.5003690011388545528559118473770158276350.00%30100.00%01612255962.99%1254242751.67%749126359.30%199614601801513962490
17ROCKFORD IceHogs715000011832-14311000011113-240400000719-1230.214183351001138854519785591184737210561810622522.73%8275.00%01612255962.99%1254242751.67%749126359.30%199614601801513962490
18SAN DIEGO Gulls531000011415-1210000016603210000089-170.70014243801113885451828559118473715246147214428.57%6183.33%01612255962.99%1254242751.67%749126359.30%199614601801513962490
19STOCKTON Flames2110000045-1110000003121010000014-320.5004812001138854564855911847375191040600.00%5260.00%01612255962.99%1254242751.67%749126359.30%199614601801513962490
20SYRACUSE Crunch2010100078-1100010004311010000035-220.500711180011388545638559118473782234327228.57%10100.00%01612255962.99%1254242751.67%749126359.30%199614601801513962490
21TORONTO Marlies20101000440100010003211010000012-120.5004711001138854568855911847375526832300.00%3166.67%01612255962.99%1254242751.67%749126359.30%199614601801513962490
22TUSCON Roadrunners30300000310-72020000027-51010000013-200.000369001138854559855911847379922135510110.00%30100.00%01612255962.99%1254242751.67%749126359.30%199614601801513962490
Total7934380410225922138402115020021511054639132302100108116-8790.50025946272121111388545264285591184737232664430811302104521.43%1352482.22%01612255962.99%1254242751.67%749126359.30%199614601801513962490
24UTICA Comets31200000770211000006511010000012-120.333713200011388545658559118473710035102912433.33%5180.00%01612255962.99%1254242751.67%749126359.30%199614601801513962490
25VICTORIAVILLE Tigres2020000029-71010000014-31010000015-400.000235001138854553855911847377214828900.00%4250.00%01612255962.99%1254242751.67%749126359.30%199614601801513962490
26WILKIES-BARRIE Penguins33000000164121100000061522000000103761.0001628440011388545198855911847372714429000.00%20100.00%01612255962.99%1254242751.67%749126359.30%199614601801513962490
_Since Last GM Reset7934380410225922138402115020021511054639132302100108116-8790.50025946272121111388545264285591184737232664430811302104521.43%1352482.22%01612255962.99%1254242751.67%749126359.30%199614601801513962490
_Vs Conference5022240110217015317241390000293702326915011007783-6490.490170303473161138854515708559118473715564412076701353425.19%931781.72%01612255962.99%1254242751.67%749126359.30%199614601801513962490
_Vs Division271517011027884-613960000248361214611011003048-18350.64878142220041138854579585591184737789220101394761519.74%471176.60%01612255962.99%1254242751.67%749126359.30%199614601801513962490

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
7979W2259462721264223266443081130211
All Games
GPWLOTWOTL SOWSOLGFGA
7934384102259221
Home Games
GPWLOTWOTL SOWSOLGFGA
4021152002151105
Visitor Games
GPWLOTWOTL SOWSOLGFGA
3913232100108116
Last 10 Games
WLOTWOTL SOWSOL
640000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2104521.43%1352482.22%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
8559118473711388545
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1612255962.99%1254242751.67%749126359.30%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
199614601801513962490


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2019-01-236MILWAUKEE Admirals4CHICAGO Wolves5WBoxScore
2 - 2019-01-2413CHICAGO Wolves0COLORADO Eagles5LBoxScore
4 - 2019-01-2635BRIDGEPORT Sound Tigers2CHICAGO Wolves7WBoxScore
5 - 2019-01-2739CHICAGO Wolves1LAVAL Rockets7LBoxScore
8 - 2019-01-3062COLORADO Eagles5CHICAGO Wolves2LBoxScore
9 - 2019-01-3176CHICAGO Wolves3ROCKFORD IceHogs5LBoxScore
10 - 2019-02-0185CHICAGO Wolves6BRIDGEPORT Sound Tigers1WBoxScore
11 - 2019-02-0296SAN DIEGO Gulls4CHICAGO Wolves3LXXBoxScore
13 - 2019-02-04106CHICAGO Wolves4SAN DIEGO Gulls3WBoxScore
14 - 2019-02-05123MILWAUKEE Admirals3CHICAGO Wolves1LBoxScore
16 - 2019-02-07136ROCKFORD IceHogs1CHICAGO Wolves4WBoxScore
17 - 2019-02-08147CHICAGO Wolves1MONT-LAURIER Sommet3LBoxScore
18 - 2019-02-09157CHICAGO Wolves2COLORADO Eagles4LBoxScore
20 - 2019-02-11170IOWA Wild2CHICAGO Wolves7WBoxScore
22 - 2019-02-13187LAVAL Rockets5CHICAGO Wolves3LBoxScore
23 - 2019-02-14197CHICAGO Wolves1ROCKFORD IceHogs4LBoxScore
24 - 2019-02-15215CHICAGO Wolves1TORONTO Marlies2LBoxScore
25 - 2019-02-16224CHICAGO Wolves3SYRACUSE Crunch5LBoxScore
27 - 2019-02-18235COLORADO Eagles0CHICAGO Wolves3WBoxScore
29 - 2019-02-20250CHICAGO Wolves3IOWA Wild2WXBoxScore
30 - 2019-02-21260PROVIDENCE Bruins3CHICAGO Wolves2LR3BoxScore
32 - 2019-02-23279PV Sharapovas5CHICAGO Wolves1LBoxScore
33 - 2019-02-24290CHICAGO Wolves1VICTORIAVILLE Tigres5LBoxScore
34 - 2019-02-25301IOWA Wild2CHICAGO Wolves3WBoxScore
36 - 2019-02-27313CHICAGO Wolves1UTICA Comets2LBoxScore
37 - 2019-02-28327MILWAUKEE Admirals1CHICAGO Wolves6WBoxScore
39 - 2019-03-02340CHICAGO Wolves1MILWAUKEE Admirals0WXBoxScore
41 - 2019-03-04357UTICA Comets3CHICAGO Wolves2LBoxScore
42 - 2019-03-05368CHICAGO Wolves1MILWAUKEE Admirals5LBoxScore
43 - 2019-03-06378UTICA Comets2CHICAGO Wolves4WBoxScore
45 - 2019-03-08392CHICAGO Wolves8BRIDGEPORT Sound Tigers3WBoxScore
46 - 2019-03-09406CHICAGO Wolves3MONT-LAURIER Sommet2WBoxScore
48 - 2019-03-11415TUSCON Roadrunners4CHICAGO Wolves0LBoxScore
49 - 2019-03-12431BROOKLYN Wolfpack0CHICAGO Wolves12WBoxScore
51 - 2019-03-14449CHICAGO Wolves9BROOKLYN Wolfpack0WBoxScore
52 - 2019-03-15457VICTORIAVILLE Tigres4CHICAGO Wolves1LBoxScore
53 - 2019-03-16472CHICAGO Wolves2PV Sharapovas1WBoxScore
54 - 2019-03-17483SYRACUSE Crunch3CHICAGO Wolves4WXBoxScore
56 - 2019-03-19501CHICAGO Wolves3ROCKFORD IceHogs7LBoxScore
57 - 2019-03-20510CHICAGO Wolves9BRIDGEPORT Sound Tigers3WBoxScore
58 - 2019-03-21518CLEVELAND Monsters4CHICAGO Wolves2LBoxScore
61 - 2019-03-24537TORONTO Marlies2CHICAGO Wolves3WXBoxScore
63 - 2019-03-26553COLORADO Eagles2CHICAGO Wolves3WBoxScore
64 - 2019-03-27564CHICAGO Wolves0ROCKFORD IceHogs3LBoxScore
65 - 2019-03-28575CHICAGO Wolves3BELLEVILLE Senators4LBoxScore
66 - 2019-03-29588ROCKFORD IceHogs4CHICAGO Wolves3LXXBoxScore
68 - 2019-03-31605WILKIES-BARRIE Penguins1CHICAGO Wolves6WBoxScore
69 - 2019-04-01618CHICAGO Wolves2CLEVELAND Monsters4LBoxScore
71 - 2019-04-03632HOLLYWOOD Oscar0CHICAGO Wolves10WBoxScore
72 - 2019-04-04643CHICAGO Wolves1TUSCON Roadrunners3LBoxScore
73 - 2019-04-05656LEHIGH VALLEY Phantoms2CHICAGO Wolves1LBoxScore
74 - 2019-04-06667CHICAGO Wolves4MILWAUKEE Admirals2WBoxScore
76 - 2019-04-08684MANITOBA Moose0CHICAGO Wolves6WR3BoxScore
77 - 2019-04-09690CHICAGO Wolves3SAN DIEGO Gulls6LBoxScore
78 - 2019-04-10703CHICAGO Wolves4HOLLYWOOD Oscar0WBoxScore
80 - 2019-04-12718BRIDGEPORT Sound Tigers2CHICAGO Wolves4WBoxScore
81 - 2019-04-13735LAVAL Rockets6CHICAGO Wolves0LBoxScore
83 - 2019-04-15750CHICAGO Wolves3LAVAL Rockets6LBoxScore
84 - 2019-04-16760ROCKFORD IceHogs8CHICAGO Wolves4LBoxScore
86 - 2019-04-18774CHICAGO Wolves4WILKIES-BARRIE Penguins1WBoxScore
87 - 2019-04-19783CHICAGO Wolves0HERSEY Bears2LBoxScore
88 - 2019-04-20795BELLEVILLE Senators4CHICAGO Wolves2LBoxScore
89 - 2019-04-21803CHICAGO Wolves6WILKIES-BARRIE Penguins2WBoxScore
91 - 2019-04-23820CORNWALL Aces2CHICAGO Wolves10WBoxScore
94 - 2019-04-26840LAVAL Rockets5CHICAGO Wolves3LBoxScore
95 - 2019-04-27851CHICAGO Wolves1COLORADO Eagles2LBoxScore
96 - 2019-04-28863CHICAGO Wolves1SAN DIEGO Gulls0WBoxScore
97 - 2019-04-29878STOCKTON Flames1CHICAGO Wolves3WBoxScore
99 - 2019-05-01894CHICAGO Wolves3COLORADO Eagles4LXBoxScore
100 - 2019-05-02904TUSCON Roadrunners3CHICAGO Wolves2LBoxScore
102 - 2019-05-04920BRIDGEPORT Sound Tigers3CHICAGO Wolves9WBoxScore
103 - 2019-05-05933CHICAGO Wolves1STOCKTON Flames4LBoxScore
105 - 2019-05-07948HERSEY Bears0CHICAGO Wolves2WBoxScore
106 - 2019-05-08959CHICAGO Wolves1PROVIDENCE Bruins2LR3BoxScore
108 - 2019-05-10970CHICAGO Wolves7MANITOBA Moose0WBoxScore
109 - 2019-05-11984SAN DIEGO Gulls2CHICAGO Wolves3WBoxScore
110 - 2019-05-12991CHICAGO Wolves1LEHIGH VALLEY Phantoms2LBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
112 - 2019-05-141006MONT-LAURIER Sommet0CHICAGO Wolves2WBoxScore
114 - 2019-05-161022MONT-LAURIER Sommet1CHICAGO Wolves3WBoxScore
116 - 2019-05-181041CHICAGO Wolves-LAVAL Rockets-
117 - 2019-05-191043CHICAGO Wolves-CORNWALL Aces-
119 - 2019-05-211066SAN DIEGO Gulls-CHICAGO Wolves-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
1 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
920,997$ 899,500$ 899,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 843,262$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 6 8,178$ 49,068$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
287851180231342115027139265023122166315339251300001205871181024217101131019218102983367111481240127223177951726310171232217.89%921682.61%31419223263.58%836171348.80%789123963.68%246619621396404848474
3082294001426275228474117170032214611432411223011041291141558275446721161379045725358448268326626758081659351603421.25%62887.10%11009195951.51%1036249341.56%661127851.72%192914512107519938457
318235370351128320182411818013011431024141171902210140994170283505788612115103614252380186283630238968038711882133516.43%1411787.94%31231232452.97%1048237744.09%674128252.57%203114761929536984504
327934380410225922138402115020021511054639132302100108116-87925946272121111388545264285591184737232664430811302104521.43%1352482.22%01612255962.99%1254242751.67%749126359.30%199614601801513962490
Total Regular Season3211491330101341212388004381618255059376563842721606778054155824161663091238212333619485833832581911371364838393787156916926491123427070613619.26%4306584.88%75271907458.09%4174901046.33%2873506256.76%842463517235197437331925
Playoff
28514000001021-1130300000412-82110000069-3210192900532011132394002266614641500.00%60100.00%04112333.33%5520127.36%258031.25%8960147356227
Total Playoff514000001021-1130300000412-82110000069-3210192900532011132394002266614641500.00%60100.00%04112333.33%5520127.36%258031.25%8960147356227