CLEVELAND Monsters

GP: 40 | W: 32 | L: 8 | OTL: 0 | P: 64
GF: 200 | GA: 58 | PP%: 16.98% | PK%: 88.89%
GM : Benoit Paulin | Morale : 99 | Team Overall : 63
Next Games #530 vs TUSCON Roadrunners
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Brett Ritchie0X100.008444747183768864306464596958567192700
2Scott Wilson0X100.007741827464798665306564626857564792690
3Nail Yakupov0X100.006742787168767567306566607064578892670
4Adam Erne0X100.006944746578678161586062616652517793650
5Josh Archibald0X100.007642787460756564306463656852534792650
6Oskar Sundqvist0X100.006842816881766561536259686153526392650
7Nikita Scherbak0X100.006042787373736965306763616851518092650
8Kyle Rau0XX100.005341766156688962676162606251516092620
9Cole Cassels0XX100.005546626066568656675854605450504489600
10Joseph LaBate0XX100.006147586085615654505356605651515999590
11T.J. Tynan0X100.004635757655485260445753555762516392570
12Joe Morrow0X100.007242836770797371305966657055557792670
13Ryan Murphy0X100.005544765665648663305751626157548292610
14Julius Bergman0X100.006445655075558255304749605650504492570
15Nick Ebert0X100.005135746771464749303842564958417992520
Scratches
TEAM AVERAGE100.00644274667067736141585861625552659263
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Juuse Saros100.00817994718190838181797754686192710
2Jon Gillies100.00748080927677767575727251636492670
Scratches
1Garret Sparks100.00756971857372767373736951634759650
2Spencer Martin100.00666669856868696767666450586759600
TEAM AVERAGE100.0074747983757776747473715263607666
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Eric Veilleux68686868707078CAN46475,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Scott WilsonCLEVELAND Monsters (CBJ)LW403438726318078622365819114.41%7102425.6133622871014748064.20%8100141.4100000673
2Brett RitchieCLEVELAND Monsters (CBJ)RW4025406552200114532146915211.68%899724.9316722870113743255.56%24300021.3000000536
3Kyle RauCLEVELAND Monsters (CBJ)C/LW4020335349001088208571279.62%480420.110661881000042268.49%89500001.3200000072
4Nail YakupovCLEVELAND Monsters (CBJ)RW40223052511004960246491528.94%1289522.3904426810005544056.30%11900001.1600000335
5Adam ErneCLEVELAND Monsters (CBJ)LW40163450491756937186481458.60%983220.8024618810000124069.57%4600011.2000100402
6Joe MorrowCLEVELAND Monsters (CBJ)D40123749534207934117358310.26%44107826.9675123787000362000.00%000000.9100000223
7Oskar SundqvistCLEVELAND Monsters (CBJ)C40212748414016611384812715.22%1067016.7642621920116613066.47%68600011.4300000511
8Josh ArchibaldCLEVELAND Monsters (CBJ)RW401628443616040351544213110.39%1069017.260118210000281065.00%4000121.2700000222
9Nikita ScherbakCLEVELAND Monsters (CBJ)RW4014243836402844126429711.11%866716.68000380000112060.47%4300001.1400000111
10T.J. TynanCLEVELAND Monsters (CBJ)C406202628006437118478.45%149912.5000000000000061.28%53200001.0400000000
11Cole CasselsCLEVELAND Monsters (CBJ)C/RW408162433215113078184510.26%1272218.070006310002581267.41%45100000.6600001001
12Ryan MurphyCLEVELAND Monsters (CBJ)D403192250241030173813277.89%3499224.801341081101164100.00%000000.4400002010
13Julius BergmanCLEVELAND Monsters (CBJ)D4011011594206912288313.57%2692523.13000871011143100.00%100000.2400000000
14Nick EbertCLEVELAND Monsters (CBJ)D402911566021111951810.53%2888722.20011566000054200.00%000000.2500000011
Team Total or Average560200365565656224206205871859510137310.76%2131168820.871835532048802352560432664.93%3137002100.9700103282827
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Juuse SarosCLEVELAND Monsters (CBJ)4032800.9291.402409812567870120.0000400223
Team Total or Average4032800.9291.402409812567870120.0000400223


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam ErneCLEVELAND Monsters (CBJ)LW234/20/1995No97 Kg185 CMNoNoNo3RFAPro & Farm1,800,000$0$0$NoLink
Brett RitchieCLEVELAND Monsters (CBJ)RW257/1/1993No99 Kg191 CMNoNoNo5RFAPro & Farm1,750,000$0$0$NoLink
Cole CasselsCLEVELAND Monsters (CBJ)C/RW235/4/1995No82 Kg183 CMNoNoNo2RFAPro & Farm750,000$0$0$NoLink
Garret SparksCLEVELAND Monsters (CBJ)G256/28/1993No95 Kg191 CMNoNoNo1RFAPro & Farm750,000$0$0$NoLink
Joe MorrowCLEVELAND Monsters (CBJ)D2512/9/1992No89 Kg183 CMNoNoNo2RFAPro & Farm715,000$0$0$NoLink
Jon GilliesCLEVELAND Monsters (CBJ)G241/22/1994No101 Kg198 CMNoNoNo2RFAPro & Farm750,000$0$0$NoLink
Joseph LaBateCLEVELAND Monsters (CBJ)C/LW254/16/1993No95 Kg196 CMNoNoNo5RFAPro & Farm750,000$0$0$NoLink
Josh ArchibaldCLEVELAND Monsters (CBJ)RW2510/6/1992No80 Kg178 CMNoNoNo1RFAPro & Farm675,000$0$0$NoLink
Julius BergmanCLEVELAND Monsters (CBJ)D2211/2/1995No93 Kg185 CMNoNoNo1RFAPro & Farm750,000$0$0$NoLink
Juuse SarosCLEVELAND Monsters (CBJ)G234/19/1995No82 Kg180 CMNoNoNo4RFAPro & Farm1,750,000$0$0$NoLink
Kyle RauCLEVELAND Monsters (CBJ)C/LW2510/24/1992No80 Kg173 CMNoNoNo5RFAPro & Farm750,000$0$0$NoLink
Nail YakupovCLEVELAND Monsters (CBJ)RW2410/6/1993No89 Kg180 CMNoNoNo1RFAPro & Farm850,000$0$0$NoLink
Nick EbertCLEVELAND Monsters (CBJ)D245/11/1994No93 Kg183 CMNoNoNo1RFAPro & Farm750,000$0$0$No
Nikita ScherbakCLEVELAND Monsters (CBJ)RW2212/30/1995No87 Kg188 CMNoNoNo1RFAPro & Farm865,000$0$0$NoLink
Oskar SundqvistCLEVELAND Monsters (CBJ)C243/23/1994No95 Kg191 CMNoNoNo3RFAPro & Farm1,200,000$0$0$NoLink
Ryan MurphyCLEVELAND Monsters (CBJ)D253/31/1993No84 Kg180 CMNoNoNo2RFAPro & Farm750,000$0$0$NoLink
Scott WilsonCLEVELAND Monsters (CBJ)LW264/24/1992No83 Kg180 CMNoNoNo3RFAPro & Farm1,050,000$0$0$NoLink
Spencer MartinCLEVELAND Monsters (CBJ)G236/8/1995No95 Kg191 CMNoNoNo2RFAPro & Farm750,000$0$0$NoLink
T.J. TynanCLEVELAND Monsters (CBJ)C262/25/1992No75 Kg173 CMNoNoNo1RFAPro & Farm750,000$0$0$No
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1924.1689 Kg185 CM2.37955,526$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Scott WilsonOskar SundqvistBrett Ritchie31122
2Adam ErneKyle RauNail Yakupov26122
3Brett RitchieCole CasselsJosh Archibald23122
4Scott WilsonT.J. TynanNikita Scherbak20122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Joe MorrowRyan Murphy31122
2Julius BergmanNick Ebert26122
3Joe MorrowRyan Murphy23122
4Julius BergmanNick Ebert20122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Scott WilsonOskar SundqvistBrett Ritchie55122
2Adam ErneKyle RauNail Yakupov45122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Joe MorrowRyan Murphy55122
2Julius BergmanNick Ebert45122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Brett RitchieScott Wilson55122
2Nail YakupovOskar Sundqvist45122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Joe MorrowRyan Murphy55122
2Julius BergmanNick Ebert45122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Brett Ritchie55122Joe MorrowRyan Murphy55122
2Scott Wilson45122Julius BergmanNick Ebert45122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Brett RitchieScott Wilson55122
2Nail YakupovOskar Sundqvist45122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Joe MorrowRyan Murphy55122
2Julius BergmanNick Ebert45122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Scott WilsonOskar SundqvistBrett RitchieJoe MorrowRyan Murphy
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Scott WilsonOskar SundqvistBrett RitchieJoe MorrowRyan Murphy
Extra Forwards
Normal PowerPlayPenalty Kill
Josh Archibald, Nikita Scherbak, Cole CasselsJosh Archibald, Nikita ScherbakCole Cassels
Extra Defensemen
Normal PowerPlayPenalty Kill
Joe Morrow, Ryan Murphy, Julius BergmanJoe MorrowRyan Murphy, Julius Bergman
Penalty Shots
Brett Ritchie, Scott Wilson, Nail Yakupov, Oskar Sundqvist, Adam Erne
Goalie
#1 : Juuse Saros, #2 : Jon Gillies
Custom OT Lines Forwards
Brett Ritchie, Scott Wilson, Nail Yakupov, Oskar Sundqvist, Adam Erne, Josh Archibald, Josh Archibald, Nikita Scherbak, Kyle Rau, Cole Cassels, T.J. Tynan
Custom OT Lines Defensemen
Joe Morrow, Ryan Murphy, Julius Bergman, Nick Ebert,


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1BRIDGEPORT Sound Tigers11000000918110000009180000000000021.0009172600777347337591630627112166102150.00%30100.00%01039150369.13%58599658.73%41362566.08%1239968716226453250
2BROOKLYN Wolfpack33000000350351100000013013220000002202261.0003568103037773473243591630627115414514375.00%70100.00%21039150369.13%58599658.73%41362566.08%1239968716226453250
3CHICAGO Wolves11000000422000000000001100000042221.000481200777347340591630627112112219100.00%110.00%01039150369.13%58599658.73%41362566.08%1239968716226453250
4COLORADO Eagles32100000752220000005231010000023-140.667712190077734739659163062711942826461119.09%13192.31%01039150369.13%58599658.73%41362566.08%1239968716226453250
5CORNWALL Aces110000001311200000000000110000001311221.0001326390077734736359163062711198017100.00%000.00%01039150369.13%58599658.73%41362566.08%1239968716226453250
6HERSEY Bears312000006601010000002-22110000064220.333611171177734738759163062711769165017317.65%7271.43%01039150369.13%58599658.73%41362566.08%1239968716226453250
7HOLLYWOOD Oscar2200000014212110000007161100000071641.000142337007773473173591630627111352422150.00%10100.00%01039150369.13%58599658.73%41362566.08%1239968716226453250
8IOWA Wild21100000963211000009630000000000020.500917260077734738359163062711581517275240.00%4250.00%01039150369.13%58599658.73%41362566.08%1239968716226453250
9LAVAL Rockets2020000037-4000000000002020000037-400.000369107773473635916306271152146339111.11%3233.33%01039150369.13%58599658.73%41362566.08%1239968716226453250
10LEHIGH VALLEY Phantoms21100000431110000003121010000012-120.50047110077734736159163062711369834700.00%40100.00%01039150369.13%58599658.73%41362566.08%1239968716226453250
11MANITOBA Moose110000001401411000000140140000000000021.0001424380177734731265916306271111016000.00%000.00%01039150369.13%58599658.73%41362566.08%1239968716226453250
12PROVIDENCE Bruins21001000853100010004311100000042241.0008132100777347358591630627115415423300.00%20100.00%01039150369.13%58599658.73%41362566.08%1239968716226453250
13ROCKFORD IceHogs2010100037-4100010002111010000016-520.500369007773473635916306271157191425700.00%6183.33%01039150369.13%58599658.73%41362566.08%1239968716226453250
14SAN DIEGO Gulls11000000431110000004310000000000021.00047110077734732859163062711236892150.00%30100.00%01039150369.13%58599658.73%41362566.08%1239968716226453250
15SYRACUSE Crunch10001000431000000000001000100043121.0004711007773473375916306271119587100.00%4175.00%01039150369.13%58599658.73%41362566.08%1239968716226453250
16TORONTO Marlies22000000615110000001011100000051441.000610160177734738259163062711511327355120.00%50100.00%01039150369.13%58599658.73%41362566.08%1239968716226453250
17TUSCON Roadrunners22000000633220000006330000000000041.00069150077734734359163062711431212376116.67%40100.00%01039150369.13%58599658.73%41362566.08%1239968716226453250
Total402980300020058142201620200010125762013601000993366640.80020036556521277734731859591630627117892132326211061816.98%901088.89%21039150369.13%58599658.73%41362566.08%1239968716226453250
19UTICA Comets22000000606110000003031100000030341.000612180277734735459163062711531126461417.14%120100.00%01039150369.13%58599658.73%41362566.08%1239968716226453250
20VICTORIAVILLE Tigres11000000413000000000001100000041321.0004812007773473165916306271131561911100.00%20100.00%01039150369.13%58599658.73%41362566.08%1239968716226453250
21WILKIES-BARRIE Penguins660000004123933000000212193300000020020121.000417411504777347340659163062711621630758112.50%90100.00%01039150369.13%58599658.73%41362566.08%1239968716226453250
_Since Last GM Reset402980300020058142201620200010125762013601000993366640.80020036556521277734731859591630627117892132326211061816.98%901088.89%21039150369.13%58599658.73%41362566.08%1239968716226453250
_Vs Conference26186020001263888129102000611447149500000652441400.7691262343602107773473117559163062711518140152387781215.38%66789.39%21039150369.13%58599658.73%41362566.08%1239968716226453250
_Vs Division713201000308225510100020713281000001019282.00030518102777347329859163062711132344813424416.67%200100.00%01039150369.13%58599658.73%41362566.08%1239968716226453250

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4064W82003655651859789213232621212
All Games
GPWLOTWOTL SOWSOLGFGA
40298300020058
Home Games
GPWLOTWOTL SOWSOLGFGA
20162200010125
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2013610009933
Last 10 Games
WLOTWOTL SOWSOL
820000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1061816.98%901088.89%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
591630627117773473
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1039150369.13%58599658.73%41362566.08%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1239968716226453250


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2019-01-231UTICA Comets0CLEVELAND Monsters3WR3BoxScore
3 - 2019-01-2527BROOKLYN Wolfpack0CLEVELAND Monsters13WBoxScore
4 - 2019-01-2633CLEVELAND Monsters11BROOKLYN Wolfpack0WBoxScore
5 - 2019-01-2740CLEVELAND Monsters9WILKIES-BARRIE Penguins0WBoxScore
7 - 2019-01-2956PROVIDENCE Bruins3CLEVELAND Monsters4WXBoxScore
9 - 2019-01-3171CLEVELAND Monsters4PROVIDENCE Bruins2WBoxScore
10 - 2019-02-0188HERSEY Bears2CLEVELAND Monsters0LBoxScore
13 - 2019-02-04109IOWA Wild3CLEVELAND Monsters7WBoxScore
14 - 2019-02-05117CLEVELAND Monsters4HERSEY Bears0WBoxScore
15 - 2019-02-06132WILKIES-BARRIE Penguins1CLEVELAND Monsters11WBoxScore
16 - 2019-02-07137CLEVELAND Monsters3UTICA Comets0WR3BoxScore
18 - 2019-02-09158CLEVELAND Monsters2HERSEY Bears4LBoxScore
19 - 2019-02-10166TUSCON Roadrunners1CLEVELAND Monsters2WBoxScore
21 - 2019-02-12183WILKIES-BARRIE Penguins0CLEVELAND Monsters4WBoxScore
22 - 2019-02-13192CLEVELAND Monsters7HOLLYWOOD Oscar1WBoxScore
23 - 2019-02-14206CLEVELAND Monsters1LAVAL Rockets3LBoxScore
25 - 2019-02-16219MANITOBA Moose0CLEVELAND Monsters14WBoxScore
26 - 2019-02-17232SAN DIEGO Gulls3CLEVELAND Monsters4WBoxScore
28 - 2019-02-19247CLEVELAND Monsters6WILKIES-BARRIE Penguins0WBoxScore
29 - 2019-02-20256CLEVELAND Monsters1LEHIGH VALLEY Phantoms2LBoxScore
31 - 2019-02-22270COLORADO Eagles1CLEVELAND Monsters3WBoxScore
33 - 2019-02-24284CLEVELAND Monsters5WILKIES-BARRIE Penguins0WBoxScore
34 - 2019-02-25300CLEVELAND Monsters4SYRACUSE Crunch3WXBoxScore
35 - 2019-02-26306ROCKFORD IceHogs1CLEVELAND Monsters2WXBoxScore
37 - 2019-02-28320COLORADO Eagles1CLEVELAND Monsters2WBoxScore
38 - 2019-03-01334CLEVELAND Monsters1ROCKFORD IceHogs6LBoxScore
40 - 2019-03-03347CLEVELAND Monsters2LAVAL Rockets4LBoxScore
41 - 2019-03-04356CLEVELAND Monsters5TORONTO Marlies1WBoxScore
43 - 2019-03-06371LEHIGH VALLEY Phantoms1CLEVELAND Monsters3WBoxScore
44 - 2019-03-07386WILKIES-BARRIE Penguins1CLEVELAND Monsters6WBoxScore
46 - 2019-03-09398CLEVELAND Monsters2COLORADO Eagles3LBoxScore
47 - 2019-03-10410IOWA Wild3CLEVELAND Monsters2LBoxScore
48 - 2019-03-11422CLEVELAND Monsters11BROOKLYN Wolfpack0WBoxScore
50 - 2019-03-13436BRIDGEPORT Sound Tigers1CLEVELAND Monsters9WBoxScore
51 - 2019-03-14452CLEVELAND Monsters13CORNWALL Aces1WBoxScore
52 - 2019-03-15463TORONTO Marlies0CLEVELAND Monsters1WBoxScore
53 - 2019-03-16475CLEVELAND Monsters4VICTORIAVILLE Tigres1WBoxScore
55 - 2019-03-18491TUSCON Roadrunners2CLEVELAND Monsters4WBoxScore
57 - 2019-03-20504HOLLYWOOD Oscar1CLEVELAND Monsters7WBoxScore
58 - 2019-03-21518CLEVELAND Monsters4CHICAGO Wolves2WBoxScore
60 - 2019-03-23530TUSCON Roadrunners-CLEVELAND Monsters-
62 - 2019-03-25545CLEVELAND Monsters-SYRACUSE Crunch-
63 - 2019-03-26559CORNWALL Aces-CLEVELAND Monsters-
64 - 2019-03-27571CLEVELAND Monsters-UTICA Comets-
66 - 2019-03-29581LAVAL Rockets-CLEVELAND Monsters-
67 - 2019-03-30598CLEVELAND Monsters-BRIDGEPORT Sound Tigers-
68 - 2019-03-31604CLEVELAND Monsters-MONT-LAURIER Sommet-
69 - 2019-04-01618CHICAGO Wolves-CLEVELAND Monsters-
71 - 2019-04-03633CLEVELAND Monsters-MANITOBA Moose-
72 - 2019-04-04647PROVIDENCE Bruins-CLEVELAND Monsters-
74 - 2019-04-06662STOCKTON Flames-CLEVELAND Monsters-
75 - 2019-04-07675CLEVELAND Monsters-TUSCON Roadrunners-
77 - 2019-04-09686PROVIDENCE Bruins-CLEVELAND Monsters-
78 - 2019-04-10699CLEVELAND Monsters-PROVIDENCE Bruins-
79 - 2019-04-11711STOCKTON Flames-CLEVELAND Monsters-
81 - 2019-04-13728CLEVELAND Monsters-BELLEVILLE Senators-
82 - 2019-04-14739CLEVELAND Monsters-CORNWALL Aces-
83 - 2019-04-15749BROOKLYN Wolfpack-CLEVELAND Monsters-
84 - 2019-04-16764HERSEY Bears-CLEVELAND Monsters-
86 - 2019-04-18776CLEVELAND Monsters-PROVIDENCE Bruins-
87 - 2019-04-19790CLEVELAND Monsters-HOLLYWOOD Oscar-
88 - 2019-04-20797CLEVELAND Monsters-PV Sharapovas-
89 - 2019-04-21805MILWAUKEE Admirals-CLEVELAND Monsters-
91 - 2019-04-23823CLEVELAND Monsters-UTICA Comets-
93 - 2019-04-25831PV Sharapovas-CLEVELAND Monsters-
95 - 2019-04-27852TORONTO Marlies-CLEVELAND Monsters-
96 - 2019-04-28868MONT-LAURIER Sommet-CLEVELAND Monsters-
98 - 2019-04-30882CLEVELAND Monsters-MILWAUKEE Admirals-
99 - 2019-05-01893HERSEY Bears-CLEVELAND Monsters-
101 - 2019-05-03909CLEVELAND Monsters-TORONTO Marlies-
102 - 2019-05-04914CLEVELAND Monsters-SAN DIEGO Gulls-
103 - 2019-05-05929UTICA Comets-CLEVELAND Monsters-
105 - 2019-05-07942CLEVELAND Monsters-IOWA Wild-
106 - 2019-05-08956UTICA Comets-CLEVELAND Monsters-
108 - 2019-05-10972CLEVELAND Monsters-STOCKTON Flames-
109 - 2019-05-11982BELLEVILLE Senators-CLEVELAND Monsters-
111 - 2019-05-131001VICTORIAVILLE Tigres-CLEVELAND Monsters-
Trade Deadline --- Trades can’t be done after this day is simulated!
113 - 2019-05-151015SYRACUSE Crunch-CLEVELAND Monsters-
114 - 2019-05-161025CLEVELAND Monsters-HERSEY Bears-
115 - 2019-05-171030CLEVELAND Monsters-BROOKLYN Wolfpack-
117 - 2019-05-191051CLEVELAND Monsters-BROOKLYN Wolfpack-
118 - 2019-05-201055BROOKLYN Wolfpack-CLEVELAND Monsters-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
21 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
913,732$ 1,815,500$ 1,815,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 877,482$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 62 15,754$ 976,748$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
2878452801022424239185392514000002211021193920140102220313766904247461170020241110703414213931344138235163649140113821311813.74%1773977.97%41649250165.93%750148350.57%827130763.27%264221501267366792452
3082541505332344123221412930413118249133412512012011627488108344610954119159105729329710501128109142178556053014551882814.89%2211394.12%61517255159.47%1049209750.02%696115560.26%240518491627483932496
318243250332635322412941221102123164103614121140120318912168863536319842181521049210316810141057107265194757051112272644416.67%1833680.33%51644270360.82%1151216953.07%766132957.64%233417491649532983523
324029803000200581422016202000101257620136010009933666420036556521277734731859591630627117892132326211061816.98%901088.89%21039150369.13%58599658.73%41362566.08%1239968716226453250
Total Regular Season28217176012671013216446771419230082546682793891417946044266533652883481321235236735696293922812512466404841594172153615718341674468568910815.67%6719885.39%175849925863.18%3535674552.41%2702441661.19%862267195261160931621723
Playoff
2840400000825-1720200000412-820200000413-9081422002240108343440014629518516318.75%14378.57%04511838.14%166823.53%227828.21%906499254923
30117400000301911642000002110115320000099014304878227111113801181381111330489702332229.09%33487.88%220436555.89%16134247.08%8817550.29%2681952777613667
Total Playoff1578000003844-68440000025223734000001322-9143862100229131514881521721511345011812131838513.16%47785.11%224948351.55%17741043.17%11025343.48%35926037710118590