TORONTO Marlies

GP: 40 | W: 18 | L: 22 | OTL: 0 | P: 36
GF: 162 | GA: 111 | PP%: 23.86% | PK%: 88.60%
GM : Maxime Joseph | Morale : 91 | Team Overall : 60
Next Games #525 vs MONT-LAURIER Sommet
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Tommy Wingels0XX100.008444736971789265586465667068613979710
2Curtis Lazar0XX100.007942797074748264416661616360578280680
3Jordan Szwarz0X100.006043736369718165316463636352515382650
4Brandon Mashinter0X100.007243706087568157505857605753523582630
5Jean-Sebastien Dea0X100.005346636062639262306260606150504382620
6Luke Johnson0X100.006045646069659057675657605750504382620
7Mark McNeill0XX100.006443696080596658675661606150508082610
8Yannick Veilleux0X100.006447606078556952505252605250505982580
9Jiri Sekac0X100.005938806970464758315550595360497189570
10Lucas Lessio0X100.005737746775454557315154615958477986560
11Louis-Marc Aubry0X100.005441666484504554435051515264615588560
12Phil Lane (R)0X100.005540656581484052304649505160437178530
13Matt Bartkowski0X100.007140836372743566305757636260553982610
14Chris Butler0X100.006142755273588459305149635666583882610
15Jamie McBain0X100.005943725072617757305146605364575480590
16Zach Trotman0X100.006742745183616957304950605753524180590
17Philip Samuelsson0X100.006244675074519355304945605251515782580
18Julian Melchiori0X100.006241765086516655304946605351515498570
Scratches
1Sebastian Collberg (R)0X100.004635807067454052304946505156518777530
TEAM AVERAGE100.00634272617558685839545459575752578360
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Reto Berra100.00746982887577757575737156654780670
2Vitek Vanecek (R)100.00666666746864696767666450584483590
Scratches
1Magnus Hellberg100.00545469896557616160595864565555560
TEAM AVERAGE100.0065637284696668686766645760497361
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Todd Richards73727272848466USA521695,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Jean-Sebastien DeaTORONTO Marlies (TOR)C4025315634161036611613812315.53%2274018.5114512670001880150.25%99500051.5100101234
2Matt BartkowskiTORONTO Marlies (TOR)D4010435318380974710718659.35%6280620.1646103774011084300.00%000001.3100000342
3Jordan SzwarzTORONTO Marlies (TOR)RW402330533412036441866114612.37%1066516.631452874000092050.00%4400011.5900000331
4Mark McNeillTORONTO Marlies (TOR)C/RW402323462516059902206515010.45%1975418.8634716620000282065.74%39700011.2200000223
5Brandon MashinterTORONTO Marlies (TOR)LW401826443732010135132448913.64%573218.3044815700004763069.81%5300101.2000000116
6Luke JohnsonTORONTO Marlies (TOR)C4021173825202887144419814.58%1057114.3024618691016951267.71%79900031.3300000221
7Chris ButlerTORONTO Marlies (TOR)D40520251724073305620308.93%4670517.651341762000171000.00%000000.7100000000
8Yannick VeilleuxTORONTO Marlies (TOR)LW40121325211604127106217411.32%651712.9514510650114801158.14%4300000.9700000011
9Philip SamuelssonTORONTO Marlies (TOR)D40316192219560243916267.69%3756914.2400006000022100.00%000000.6700001000
10Brett ConnollyTORONTO Maple LeafsRW1431316141007176416474.69%322416.03033827000060150.00%1200001.4300000201
11Brian GibbonsTORONTO Maple LeafsC/LW148715122015329425878.51%334824.860117340001591054.01%37400000.8600000022
12Zach TrotmanTORONTO Marlies (TOR)D36411151933570284510338.89%3453014.7400008000136200.00%100000.5700001010
13Brendan LeipsicTORONTO Maple LeafsLW9571213203642111711.90%013915.46112414000000054.55%1100001.7200000100
14Jamie McBainTORONTO Marlies (TOR)D36189920047222812263.57%3763217.57123960000167000.00%000000.2800000000
15Lucas LessioTORONTO Marlies (TOR)LW1044832010164116319.76%513713.7300001000020040.00%500001.1700000001
16Mark JankowskiTORONTO Maple LeafsC3448700141441328.57%04715.7400005000000079.59%4900013.3900000110
17Louis-Marc AubryTORONTO Marlies (TOR)C113362201515393187.69%214713.4210111000011057.23%15900000.8100000010
18Phil LaneTORONTO Marlies (TOR)RW1015624088234104.35%210010.0210110000000071.43%700001.2000000000
19Julian MelchioriTORONTO Marlies (TOR)D32243000151040.00%13812.770000000000000.00%000002.0900000000
20Sebastian CollbergTORONTO Marlies (TOR)RW12132000141550.00%01414.420000000000100.00%000004.1600000000
21Jiri SekacTORONTO Marlies (TOR)LW1000000202310.00%01010.20000000000000100.00%100000.0000000000
Team Total or Average508177284461319250207095951552430108911.40%304843416.602140611837081231973018558.92%2950001111.0900103172122
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Reto BerraTORONTO Marlies (TOR)36152100.9192.642158829511700200.0000360521
Team Total or Average36152100.9192.642158829511700200.0000360521


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Brandon MashinterTORONTO Marlies (TOR)LW299/20/1988No96 Kg193 CMNoNoNo1UFAPro & Farm575,000$0$0$NoLink
Chris ButlerTORONTO Marlies (TOR)D3110/27/1986No89 Kg185 CMNoNoNo2UFAPro & Farm650,000$0$0$NoLink
Curtis LazarTORONTO Marlies (TOR)C/RW232/2/1995No95 Kg183 CMNoNoNo6RFAPro & Farm950,000$0$0$NoLink
Jamie McBainTORONTO Marlies (TOR)D302/25/1988No82 Kg185 CMNoNoNo2UFAPro & Farm650,000$0$0$NoLink
Jean-Sebastien DeaTORONTO Marlies (TOR)C242/8/1994No80 Kg180 CMNoNoNo3RFAPro & Farm750,000$0$0$NoLink
Jiri SekacTORONTO Marlies (TOR)LW266/10/1992No84 Kg185 CMNoNoNo3RFAPro & Farm1,000,000$0$0$No
Jordan SzwarzTORONTO Marlies (TOR)RW275/14/1991No91 Kg180 CMNoNoNo1RFAPro & Farm750,000$0$0$NoLink
Julian MelchioriTORONTO Marlies (TOR)D2612/6/1991No97 Kg196 CMNoNoNo3RFAPro & Farm750,000$0$0$NoLink
Louis-Marc AubryTORONTO Marlies (TOR)C2611/11/1991No99 Kg193 CMNoNoNo1RFAPro & Farm750,000$0$0$No
Lucas LessioTORONTO Marlies (TOR)LW251/23/1993No96 Kg185 CMNoNoNo5RFAPro & Farm750,000$0$0$No
Luke JohnsonTORONTO Marlies (TOR)C239/19/1994No90 Kg155 CMNoNoNo5RFAPro & Farm925,000$0$0$NoLink
Magnus HellbergTORONTO Marlies (TOR)G274/4/1991No95 Kg198 CMNoNoNo1RFAPro & Farm750,000$0$0$No
Mark McNeillTORONTO Marlies (TOR)C/RW252/22/1993No97 Kg188 CMNoNoNo1RFAPro & Farm600,000$0$0$NoLink
Matt BartkowskiTORONTO Marlies (TOR)D306/4/1988No89 Kg185 CMNoNoNo1UFAPro & Farm1,000,000$0$0$NoLink
Phil LaneTORONTO Marlies (TOR)RW265/29/1992Yes99 Kg191 CMNoNoNo3RFAPro & Farm750,000$0$0$No
Philip SamuelssonTORONTO Marlies (TOR)D277/26/1991No88 Kg188 CMNoNoNo1RFAPro & Farm1,950,000$0$0$NoLink
Reto BerraTORONTO Marlies (TOR)G311/3/1987No99 Kg193 CMNoNoNo1UFAPro & Farm1,660,000$0$0$NoLink
Sebastian CollbergTORONTO Marlies (TOR)RW242/23/1994Yes89 Kg180 CMNoNoNo1RFAPro & Farm750,000$0$0$No
Tommy WingelsTORONTO Marlies (TOR)C/RW304/12/1988No91 Kg183 CMNoNoNo2UFAPro & Farm1,750,000$0$0$NoLink
Vitek VanecekTORONTO Marlies (TOR)G221/9/1996Yes82 Kg185 CMNoNoNo3RFAPro & Farm750,000$0$0$NoLink
Yannick VeilleuxTORONTO Marlies (TOR)LW252/22/1993No89 Kg188 CMNoNoNo5RFAPro & Farm750,000$0$0$NoLink
Zach TrotmanTORONTO Marlies (TOR)D288/26/1990No99 Kg191 CMNoNoNo5UFAPro & Farm750,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2226.5992 Kg185 CM2.55907,273$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Brandon MashinterJean-Sebastien DeaJordan Szwarz33023
2Yannick VeilleuxLuke JohnsonMark McNeill30023
3Mark McNeill27023
410032
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt Bartkowski36023
2Chris ButlerJamie McBain31023
3Zach TrotmanPhilip Samuelsson28023
45032
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Brandon MashinterJean-Sebastien DeaJordan Szwarz50005
2Yannick VeilleuxLuke JohnsonMark McNeill50005
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt Bartkowski50014
2Chris ButlerJamie McBain50014
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Jean-Sebastien DeaBrandon Mashinter50041
2Luke JohnsonYannick Veilleux50041
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt Bartkowski50050
2Chris ButlerJamie McBain50050
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Jean-Sebastien Dea50050Matt Bartkowski50050
2Luke Johnson50050Chris ButlerJamie McBain50050
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Jean-Sebastien DeaBrandon Mashinter50014
2Luke JohnsonYannick Veilleux50014
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt Bartkowski50023
2Chris ButlerJamie McBain50023
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Brandon MashinterJean-Sebastien DeaJordan SzwarzMatt Bartkowski
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Brandon MashinterJean-Sebastien DeaJordan SzwarzMatt Bartkowski
Extra Forwards
Normal PowerPlayPenalty Kill
Mark McNeill, Yannick Veilleux, Mark McNeill, Yannick VeilleuxMark McNeill
Extra Defensemen
Normal PowerPlayPenalty Kill
Zach Trotman, Philip Samuelsson, Zach TrotmanZach Trotman, Philip Samuelsson
Penalty Shots
Jordan Szwarz, Brandon Mashinter, Jean-Sebastien Dea, Luke Johnson, Mark McNeill
Goalie
#1 : Reto Berra, #2 : Vitek Vanecek
Custom OT Lines Forwards
Jordan Szwarz, Brandon Mashinter, Jean-Sebastien Dea, Luke Johnson, Mark McNeill, Yannick Veilleux, Yannick Veilleux, , , ,
Custom OT Lines Defensemen
, Matt Bartkowski, Chris Butler, Jamie McBain, Zach Trotman


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1BELLEVILLE Senators523000001319-630300000513-82200000086240.4001324370079483411514994764735174522610011327.27%13192.31%0610115452.86%623130147.89%34164353.03%984730968247451224
2CHICAGO Wolves11000000211110000002110000000000021.0002460079483412749947647352872163133.33%000.00%0610115452.86%623130147.89%34164353.03%984730968247451224
3CLEVELAND Monsters2020000016-51010000015-41010000001-100.00012300794834151499476473582251738500.00%5180.00%0610115452.86%623130147.89%34164353.03%984730968247451224
4CORNWALL Aces77000000751263220000002322155000000521042141.00075138213027948341469499476473512734241365360.00%12283.33%0610115452.86%623130147.89%34164353.03%984730968247451224
5HERSEY Bears1010000035-2000000000001010000035-200.0003690079483411749947647354471622300.00%7271.43%1610115452.86%623130147.89%34164353.03%984730968247451224
6IOWA Wild2020000057-21010000023-11010000034-100.00051015007948341614994764735861110427228.57%5260.00%0610115452.86%623130147.89%34164353.03%984730968247451224
7LAVAL Rockets1010000024-21010000024-20000000000000.00024600794834127499476473556154214125.00%20100.00%0610115452.86%623130147.89%34164353.03%984730968247451224
8MILWAUKEE Admirals1010000012-11010000012-10000000000000.0001120079483412949947647354011417200.00%20100.00%0610115452.86%623130147.89%34164353.03%984730968247451224
9MONT-LAURIER Sommet11000000422000000000001100000042221.00047110079483411949947647353718810000.00%40100.00%0610115452.86%623130147.89%34164353.03%984730968247451224
10PROVIDENCE Bruins1010000013-2000000000001010000013-200.0001230079483411549947647352611413100.00%10100.00%0610115452.86%623130147.89%34164353.03%984730968247451224
11PV Sharapovas311010001091211000006601000100043140.6671016260079483418449947647358634305710330.00%14378.57%0610115452.86%623130147.89%34164353.03%984730968247451224
12ROCKFORD IceHogs1010000034-1000000000001010000034-100.0003470079483412949947647353294124125.00%10100.00%0610115452.86%623130147.89%34164353.03%984730968247451224
13SAN DIEGO Gulls1010000002-21010000002-20000000000000.0000000079483412949947647352916421300.00%20100.00%0610115452.86%623130147.89%34164353.03%984730968247451224
14STOCKTON Flames1010000025-3000000000001010000025-300.0002460079483411749947647354210216100.00%10100.00%0610115452.86%623130147.89%34164353.03%984730968247451224
15SYRACUSE Crunch6420000029161343100000218132110000088080.6672951800079483412894994764735165448013717741.18%28196.43%0610115452.86%623130147.89%34164353.03%984730968247451224
16TUSCON Roadrunners3030000038-52020000024-21010000014-300.000358007948341374994764735134292259700.00%11190.91%0610115452.86%623130147.89%34164353.03%984730968247451224
Total401722010001621115120812000007151202091001000916031360.450162292454027948341145349947647351279358269755882123.86%1141388.60%1610115452.86%623130147.89%34164353.03%984730968247451224
18UTICA Comets1010000013-2000000000001010000013-200.00012300794834125499476473533909200.00%000.00%0610115452.86%623130147.89%34164353.03%984730968247451224
19VICTORIAVILLE Tigres1010000012-1000000000001010000012-100.00011200794834117499476473545131018300.00%50100.00%0610115452.86%623130147.89%34164353.03%984730968247451224
20WILKIES-BARRIE Penguins11000000615110000006150000000000021.00061117007948341604994764735133211000.00%10100.00%0610115452.86%623130147.89%34164353.03%984730968247451224
_Since Last GM Reset401722010001621115120812000007151202091001000916031360.450162292454027948341145349947647351279358269755882123.86%1141388.60%1610115452.86%623130147.89%34164353.03%984730968247451224
_Vs Conference291513010001428062146800000593623159501000834439320.55214225639802794834111444994764735896245212575611829.51%931089.25%0610115452.86%623130147.89%34164353.03%984730968247451224
_Vs Division4149010001012-2267000007612820100036-3303.7501019290079483411284994764735139353571800.00%13376.92%1610115452.86%623130147.89%34164353.03%984730968247451224

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4036L11622924541453127935826975502
All Games
GPWLOTWOTL SOWSOLGFGA
4017221000162111
Home Games
GPWLOTWOTL SOWSOLGFGA
2081200007151
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2091010009160
Last 10 Games
WLOTWOTL SOWSOL
190000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
882123.86%1141388.60%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
49947647357948341
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
610115452.86%623130147.89%34164353.03%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
984730968247451224


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2019-01-234SYRACUSE Crunch1TORONTO Marlies11WR3BoxScore
2 - 2019-01-2414TORONTO Marlies12CORNWALL Aces5WBoxScore
4 - 2019-01-2631BELLEVILLE Senators7TORONTO Marlies2LBoxScore
6 - 2019-01-2847TORONTO Marlies10CORNWALL Aces3WBoxScore
7 - 2019-01-2957CORNWALL Aces2TORONTO Marlies12WBoxScore
9 - 2019-01-3173TORONTO Marlies12CORNWALL Aces1WBoxScore
10 - 2019-02-0187BELLEVILLE Senators4TORONTO Marlies2LBoxScore
11 - 2019-02-0295TORONTO Marlies2BELLEVILLE Senators1WBoxScore
13 - 2019-02-04108TORONTO Marlies1TUSCON Roadrunners4LBoxScore
14 - 2019-02-05121PV Sharapovas2TORONTO Marlies3WBoxScore
15 - 2019-02-06134TORONTO Marlies8CORNWALL Aces0WBoxScore
17 - 2019-02-08145SYRACUSE Crunch1TORONTO Marlies4WR3BoxScore
18 - 2019-02-09154TORONTO Marlies4SYRACUSE Crunch5LBoxScore
20 - 2019-02-11173SYRACUSE Crunch5TORONTO Marlies3LR3BoxScore
22 - 2019-02-13189TORONTO Marlies4PV Sharapovas3WXBoxScore
23 - 2019-02-14196TUSCON Roadrunners2TORONTO Marlies1LBoxScore
24 - 2019-02-15215CHICAGO Wolves1TORONTO Marlies2WBoxScore
26 - 2019-02-17225TORONTO Marlies1VICTORIAVILLE Tigres2LBoxScore
27 - 2019-02-18234TORONTO Marlies6BELLEVILLE Senators5WBoxScore
29 - 2019-02-20248BELLEVILLE Senators2TORONTO Marlies1LBoxScore
31 - 2019-02-22267WILKIES-BARRIE Penguins1TORONTO Marlies6WBoxScore
32 - 2019-02-23280TORONTO Marlies1PROVIDENCE Bruins3LBoxScore
33 - 2019-02-24287TORONTO Marlies10CORNWALL Aces1WBoxScore
34 - 2019-02-25304MILWAUKEE Admirals2TORONTO Marlies1LBoxScore
36 - 2019-02-27317TORONTO Marlies3ROCKFORD IceHogs4LBoxScore
37 - 2019-02-28325TORONTO Marlies3HERSEY Bears5LR3BoxScore
39 - 2019-03-02341SYRACUSE Crunch1TORONTO Marlies3WR3BoxScore
41 - 2019-03-04356CLEVELAND Monsters5TORONTO Marlies1LBoxScore
42 - 2019-03-05366TORONTO Marlies4SYRACUSE Crunch3WR3BoxScore
43 - 2019-03-06379TORONTO Marlies4MONT-LAURIER Sommet2WBoxScore
45 - 2019-03-08390PV Sharapovas4TORONTO Marlies3LBoxScore
46 - 2019-03-09404LAVAL Rockets4TORONTO Marlies2LBoxScore
48 - 2019-03-11424SAN DIEGO Gulls2TORONTO Marlies0LBoxScore
49 - 2019-03-12434TORONTO Marlies3IOWA Wild4LBoxScore
51 - 2019-03-14447TUSCON Roadrunners2TORONTO Marlies1LBoxScore
52 - 2019-03-15463TORONTO Marlies0CLEVELAND Monsters1LBoxScore
53 - 2019-03-16474IOWA Wild3TORONTO Marlies2LBoxScore
54 - 2019-03-17482TORONTO Marlies1UTICA Comets3LBoxScore
56 - 2019-03-19500CORNWALL Aces0TORONTO Marlies11WBoxScore
57 - 2019-03-20507TORONTO Marlies2STOCKTON Flames5LBoxScore
59 - 2019-03-22525MONT-LAURIER Sommet-TORONTO Marlies-
61 - 2019-03-24537TORONTO Marlies-CHICAGO Wolves-
62 - 2019-03-25550TORONTO Marlies-PV Sharapovas-
63 - 2019-03-26561VICTORIAVILLE Tigres-TORONTO Marlies-
65 - 2019-03-28578ROCKFORD IceHogs-TORONTO Marlies-
67 - 2019-03-30592TORONTO Marlies-TUSCON Roadrunners-
68 - 2019-03-31603TORONTO Marlies-PV Sharapovas-
69 - 2019-04-01613UTICA Comets-TORONTO Marlies-
70 - 2019-04-02630PV Sharapovas-TORONTO Marlies-
71 - 2019-04-03641TORONTO Marlies-BROOKLYN Wolfpack-
73 - 2019-04-05654TORONTO Marlies-BRIDGEPORT Sound Tigers-
74 - 2019-04-06664BRIDGEPORT Sound Tigers-TORONTO Marlies-
76 - 2019-04-08679BELLEVILLE Senators-TORONTO Marlies-
78 - 2019-04-10695TORONTO Marlies-MANITOBA Moose-
79 - 2019-04-11709MANITOBA Moose-TORONTO Marlies-
80 - 2019-04-12724TORONTO Marlies-LAVAL Rockets-
81 - 2019-04-13734STOCKTON Flames-TORONTO Marlies-
83 - 2019-04-15747TORONTO Marlies-COLORADO Eagles-
84 - 2019-04-16759BROOKLYN Wolfpack-TORONTO Marlies-
85 - 2019-04-17773TORONTO Marlies-MILWAUKEE Admirals-
87 - 2019-04-19786PROVIDENCE Bruins-TORONTO Marlies-
88 - 2019-04-20799TORONTO Marlies-SYRACUSE Crunch-
90 - 2019-04-22812WILKIES-BARRIE Penguins-TORONTO Marlies-
92 - 2019-04-24826TORONTO Marlies-WILKIES-BARRIE Penguins-
93 - 2019-04-25838COLORADO Eagles-TORONTO Marlies-
95 - 2019-04-27852TORONTO Marlies-CLEVELAND Monsters-
96 - 2019-04-28862TORONTO Marlies-LEHIGH VALLEY Phantoms-
97 - 2019-04-29871TUSCON Roadrunners-TORONTO Marlies-
98 - 2019-04-30888TORONTO Marlies-CORNWALL Aces-
100 - 2019-05-02900TORONTO Marlies-BELLEVILLE Senators-
101 - 2019-05-03909CLEVELAND Monsters-TORONTO Marlies-
103 - 2019-05-05925CORNWALL Aces-TORONTO Marlies-
104 - 2019-05-06938TORONTO Marlies-HOLLYWOOD Oscar-
106 - 2019-05-08952HOLLYWOOD Oscar-TORONTO Marlies-
108 - 2019-05-10974HERSEY Bears-TORONTO Marlies-
109 - 2019-05-11983TORONTO Marlies-HERSEY Bears-
110 - 2019-05-12990TORONTO Marlies-HOLLYWOOD Oscar-
Trade Deadline --- Trades can’t be done after this day is simulated!
112 - 2019-05-141008LEHIGH VALLEY Phantoms-TORONTO Marlies-
113 - 2019-05-151017TORONTO Marlies-SAN DIEGO Gulls-
115 - 2019-05-171031PROVIDENCE Bruins-TORONTO Marlies-
117 - 2019-05-191050TORONTO Marlies-TUSCON Roadrunners-
119 - 2019-05-211065CORNWALL Aces-TORONTO Marlies-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
21 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,298,106$ 1,996,000$ 1,996,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 962,182$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 62 22,425$ 1,390,350$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
287864802301449793703933401100225361893931401201224431811284498271276034235125872386112801256131513126534647014031282721.09%2151891.63%111621244166.41%903164454.93%810121066.94%265321001184391855504
308250180418138313424941318020001996013941191002181184741101003836771060120200918017359511681136126066158146961015061403021.43%2502390.80%51709267263.96%1071192255.72%775121863.63%255819601462474955528
3182531707401383166217413090200019374119412380540119092981063836911074214177115847341811691070115725197760080716672375623.63%3725186.29%71800282563.72%1368237457.62%827130163.57%223916431713540995519
3240172201000162111512081200000715120209100100091603136162292454027948341145349947647351279358269755882123.86%1141388.60%1610115452.86%623130147.89%34164353.03%984730968247451224
Total Regular Season28218465014883137749088714110233051006882214671418232097836892694203701377248738643706913792852712327411639384205109610217732156533159313422.60%95110588.96%245740909263.13%3965724154.76%2753437262.97%843564345329165432561777
Playoff
2821165000006044161192000003621151073000002423132601061660415232026111992011971450613017335962914.52%75790.67%134168449.85%30864447.83%14028948.44%531368485159280139
3019109000003636010730000025169936000001120-9203669105011510925241551781801152715717637447714.89%85890.59%028359647.48%29563846.24%12025447.24%432287486148249121
Total Playoff40261400000968016211650000061372419109000003543-8529617527105303329411353543793772510332873497331091614.68%1601590.63%1624128048.75%603128247.04%26054347.88%964656972307529260